博碩士論文 107521075 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.238.72.180
姓名 藍子鈞(Zih-Jyun Lan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於腦波相關係數方法提取有效想像運動腦波
(Effective MI Brain Wave Extraction based on Correlation Coefficient Method)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 加強型數位濾波器設計於主動式噪音控制之應用★ 非匹配不確定可變結構系統之分析與設計
★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善★ 無轉軸偵測元件之無刷直流馬達驅動器研製
★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製★ 感應馬達之新型直接轉矩控制研究
★ 同步磁阻馬達之性能分析及運動控制研究★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-23以後開放)
摘要(中) 本論文基於時間序列計算相關係數,用於偵測想像運動(Motor Imagery, MI)開始時間,擷取有效的腦電圖(Electroencephalography, EEG)訊號,提出方法利用?波的相關係數,能夠找到有效EEG 訊號的起始時間點。因而降低計算負擔並有效減少共空間形樣法(Common Spatial Patterns, CSP)特徵提取的資料量大小,最後使用支持向量機(Support Vector Machine, SVM)達成分類準確度的提升。此外,提出方法在腦機介面(Brain-Computer Interface, BCI)的應用上,結合虛擬實境(Virtual Reality, VR)提出偵測想像運動的演算法。
摘要(英) The thesis, based on time series, calculates the correlation coefficient, and then detects the start time of motor imagery (MI). Moreover, the thesis proposes a method to capture the effective Electroencephalography (EEG) signal. Then using the correlation coefficient of the ? wave, the method could find out the starting position of the effective EEG signal. Therefore, it dramatically reduces the amount of EEG data, which effectively reduces the computation load for feature extracted by common spatial patterns (CSP). Finally support vector machine (SVM) is used to improve the classification accuracy. Furthermore, in the application of brain-computer interface (BCI) combined with virtual reality (VR), an algorithm for detecting MI is demonstrated.
關鍵字(中) ★ 腦電圖
★ 腦機介面
★ 想像運動
★ 相關係數
★ 共同空間形樣法
★ 支持 向量機
★ 虛擬實境
關鍵字(英) ★ Electroencephalography
★ Brain-computer interface
★ Motor imagery
★ Correlation coefficient
★ Common spatial patterns
★ Support vector machine
★ Virtual reality
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-2-1 提取想像運動區間最佳EEG訊號 2
1-2-2 擴充虛擬實境應用範圍 2
1-3 文獻回顧 3
1-4 內容大綱 5
第二章 腦波資料 6
2-1 大腦功能區域 6
2-2 腦波頻段特性 7
2-3 EEG資料庫 8
2-3-1 BCI競賽資料庫 8
2-3-2 自行錄製資料庫 9
第三章 演算法介紹 10
3-1 想像運動區間最佳EEG訊號起始點偵測 10
3-1-1 事件相關去同步 10
3-1-2 時間序列相關係數 15
3-1-3 最佳EEG訊號起始點挑選 19
3-2 想像運動偵測 21
3-3 共同空間形樣法 23
3-3-1 共同空間濾波器 23
3-3-2 共同形樣空間特徵提取 25
3-4 支持向量機 26
第四章 偵測最佳EEG訊號實驗結果與探討 30
4-1 演算法架構 30
4-2 實驗結果 33
4-2-1 BCI 競賽資料庫 34
4-2-2 自行錄製資料庫 38
4-2-3 演算法架構分類準確度比較 42
第五章 偵測想像運動實驗結果與應用 45
5-1 系統運算架構 45
5-2 狀態偵測閥值訓練與測試 46
5-3 即時物件控制 51
第六章 結論與未來展望 53
6-1 結論 53
6-2 未來展望 54
參考文獻 55
參考文獻 [1] X. An, D. Kuang, X. Guo, Y. Zhao, and L. He, “A deep learning method for classification of EEG data based on motor imagery,” Proceedings of the International Conference on Intelligent Computing in Bioinformatics, vol. 8590, D.-S. Huang, K. Han, and M. Gromiha, Eds., August, 2014, pp. 203–210.
[2] T.-H. Nguyen, D.-L. Yang, and W.-Y. Chung, “A High-Rate BCI Speller Bases on Eye-Closed EEG Signal,” IEEE Access, vol. 6, pp.33995-34003, June, 2018.
[3] L. F. Nicolas-Alonso, R. Corralejo, J. Gomez-Pilar, D. Álvarez, and R. Hornero, “Adaptive Stacked Generalization for Muticlass Motor Imagery-Based Brain Computer Interfaces,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 23, no. 4, pp.702-712, February, 2015.
[4] N. Manmmone, F. L. Foresta, and F. C. Morabito, “Automatic Artifact Rejection From Multichannel Scalp EEG by Wavelet ICA,” IEEE Sensors Journal, vol. 12, no. 3, pp. 533-542, April, 2011.
[5] L. F. Nicolas-Alonso, and J. Gomez-Gil, “Brain Computer Interfaces, a Review,” Sensors, vol. 12, no. 2, pp. 1211-1279, Jane, 2012.
[6] G. Pfurtscheller, C. Neuper, D. Flotzinger, and M. Pregenzer, “EEG-based discrimination between imagination of right and left hand movement,” Electroencephalography and Clinical Neurophysiology, vol. 103, no. 6, pp. 642–651, July, 1997.
[7] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, “Optimal Spatial Filtering of Single Trial EEG During Imagined Hand Movement,” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 4, pp. 441-446, December, 2000.
[8] Q. Novi, C. Guan, T. H. Dat, and P. Xue, “Sub-band common spatial pattern (SBCSP) for brain-computer interface,” in Proc. 3rd Int.IEEE/EMBS Conf. Neural Eng., May 2007, pp. 204–207.
[9] K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, “Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface,” 2008 IEEE International Joint Conference on Neural Networks, pp. 2390-2397, June, 2008.
[10] C. Junli, and J. Licheng, “Classification mechanism of support vector machines,” WCC 2000 - ICSP 2000. 2000 5th International Conference on Signal Processing Proceedings. 16th World Computer Congress 2000, August, 2002.
[11] B. Xu, L. Zhang, A. Song, C. Wu, W. Li, D. Zhang, G. Xu, H. Li, and H. Zeng, “Wavelet Transform Time-Frequency Image and Convolutional Network-Based Motor Imagery EEG Classification,” IEEE Access, vol. 7, pp. 6084-6093, December, 2018.
[12] W.-L. Zheng, J.-Y. Zhu, Y. Peng, and B.-L. Lu, “EEG-based emotion classification using deep belief networks,” in Proc. IEEE Int. Conf. Multimedia Expo (ICME), July 2014, pp. 1-6.
[13] D. Jenson, A. L. Bowers, D. Hudock, and T. Saltuklaroglu, “The Application of EEG Mu Rhythm Measures to Neurophysiological Research in Stuttering,” Front. Hum. Neurosci., vol. 13, January, 2020.
[14] C. Brunner, R. Leeb, G. R. Mu ̈ller-Putz, A. Schlo ̈gl, and G. Pfurtscheller, “BCI Competition 2008 – Graz data set A,” Institute for Human-Computer Interfaces, Graz University of Technology, 2008
[15] F. Shahlaei, N. Bagh, A. D. Shaligram, M. R. Reddy and M. S. Zambare, “Classification of Motor Imagery Tasks Using Inter Trial Variance In The Brain Computer Interface,” 2018 IEEE International Symposium on Medical Measurements and Applications, pp. 11-13, June, 2018.
[16] Z. J. Koles, M. S. Lazar, and S. Z. Zhou, “Spatial Patterns Underlying Population Differences in the Background EEG,” Brain Topography, vol. 2, no.4, pp. 275-284, June, 1990.
[17] J. Mu ̈ller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, “Designing optimal spatial filters for single-trial EEG classification in a movement task,” Clinical Neurophysiology, vol. 110, no. 5, pp. 787-798, May 1999.
[18] Y. Yu, Y. Liu, J. Jiang, E. Yin, Z. Zhou, and D. Hu, “An Asynchronous Control Paradigm Based on Sequential Motor Imagery and Its Application in Wheelchair Navigation,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 12, pp. 2367-2375, November, 2018.
指導教授 徐國鎧(Kuo-Kai Shyu) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明