博碩士論文 107521077 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:44.192.114.32
姓名 梁家輝(Chia-Hui Liang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
(Adaptive Complementary Sliding Mode-Based Control of Synchronous Reluctance Motor with MPF, Flux-Weakening, and MTPV)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統
★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台
★ 智慧型同動控制之龍門式定位平台及應用★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統
★ 智慧型控制雙饋式感應風力發電系統之研製★ 無感測器直流變頻壓縮機驅動系統之研製
★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統★ 多重地網系統之人身安全驗證與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文研究目的為研製與發展用於定轉矩區、定功率區和降功率區的高性能寬速度範圍同步磁阻馬達驅動系統,當系統運行於額定轉速之下時,採用了最大功率因數控制,使控制的同步磁阻馬達可以操作在最大的功率因數工作點,當轉速運行於額定轉速之上,則透過新型的電壓角控制器,達到弱磁和每伏特最大轉矩控制來實現寬速度範圍之操作。由於同步磁阻馬達未模式化動態的存在及磁飽和現象,使得其系統具有高度非線性及磁飽和現象,為了強化速度的動態響應,設計出以交軸電流為基礎的適應性互補式滑動模態系統於同步磁阻馬達的速度追隨控制。此外,為了改善同步磁阻馬達的能源成本,提出了一種線上即時的最大功率因數控制器來生成同步磁阻馬達當前的直軸電流命令。另一方面,當馬達轉速操作超過額定轉速,操作於定功率區以及降功率區時,以電壓控制取代電流控制來進一步提升高速區之操作範圍,其電壓控制器產生定子電壓命令的增量值,能迅速地達到最大電壓上限,同時具有每伏特最大轉矩之限制器的新型電壓角控制器,並透過具前饋項的電壓角控制器計算電壓角命令。
最後,本研究以32位元浮點運算數位訊號處理器TMS320F28075將適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制,實現於功率4kW的同步磁阻馬達驅動系統,通過實驗結果驗證了所提出之理論的強健性。
摘要(英) In order to develop a wide speed range operation of synchronous reluctance motor (SynRM) drive system for constant torque, constant power and reduced power regions, an adaptive complementary sliding mode (ACSM) speed control with maximum power factor (MPF), flux-weakening (FW), and maximum torque per voltage (MTPV) is proposed in this study. Firstly, a conventional FW control system with field-oriented control is introduced. To improve the dynamic response of speed, an ACSM speed controller is derived. Moreover, an online MPF controller is proposed to generate the d-axis current command for the current control mode of the SynRM. Furthermore, the FW voltage controller is employed to produce the incremental value of stator voltage command to achieve the maximum voltage limit. In addition, a novel voltage angle controller with an MTPV limiter is designed to generate the voltage angle command for the voltage control mode. Finally, the proposed ACSM speed control system is implemented in a 32-bit floating-point digital signal processor TMS320F28075 and its robustness and effectiveness are verified by some experimental results.
關鍵字(中) ★ 同步磁阻馬達
★ 適應性互補式滑動模態控制
★ 最大功率因數控制
★ 弱磁控制
★ 每伏特最大轉矩
★ 電壓角控制
關鍵字(英) ★ Synchronous reluctance motor (SynRM)
★ adaptive complementary sliding mode (ACSM) control
★ maximum power factor (MPF)
★ flux-weakening (FW)
★ maximum torque per voltage (MTPV)
★ voltage angle control
論文目次 摘要. I
Abstract II
目錄. IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 6
1.3 論文貢獻 9
1.4 論文大綱 10
第二章 同步磁阻馬達驅動系統之控制板介紹 11
2.1 前言 11
2.2 TMS320F28075數位訊號處理器簡介 13
2.3 以DSP為基礎的同步磁阻馬達控制驅動系統 15
2.3.1 TMS320F28075 DSP控制板 16
2.3.2 輸入/輸出板 17
2.4 外部負載控制電路 18
第三章 同步磁阻馬達驅動系統 20
3.1 前言 20
3.2 同步磁阻馬達 22
3.3 同步磁阻馬達數學動態模型 23
3.4 座標轉換之電壓及磁阻轉矩方程式 25
3.5 同步磁阻馬達控制架構 29
3.5.1 傳統弱磁控制架構 29
3.5.2 適應性互補式滑動模態之寬速度控制架構 33
第四章 適應性互補式滑動模態速度控制 36
4.1前言 36
4.2適應性互補式滑動模態速度控制系統 37
4.2.1 適應性互補式滑動模態速度控制 37
4.2.2 適應性互補式滑動模態控制穩定性證明 40
第五章 同步磁阻馬達寬速度控制 41
5.1簡介 41
5.2模式選擇器 46
5.3模式I–電流控制 47
5.3.1 定子磁通估測器 47
5.3.2 線上最大功率因數控制 48
5.4模式II–電壓控制 52
5.4.1 電壓角控制器 52
5.4.2 弱磁電壓控制器與模式II之初始電壓 53
第六章 同步磁阻馬達之有限元素分析 56
6.1簡介 56
6.2建立同步磁阻馬達之模型 57
6.2.1同步磁阻馬達有限元素分析之模型建立 58
6.2.2 ANSYS設定 61
6.3有限元素分析同步磁阻馬達之磁通 69
6.3.1馬達磁通 69
6.3.2馬達磁飽和現象 73
6.3.3 同步磁阻馬達之電感探討 76
第七章 適應性互補式滑動模態之寬速度控制實驗結果與討論 79
7.1前言 79
7.2模式I–電流控制實驗結果 81
7.3模式選擇器實驗結果 101
7.4模式II–電壓控制實驗結果 106
7.5實驗結果討論 113
第八章 結論與未來展望 120
8.1 結論 120
8.2未來展望 121
參考文獻 122
作者簡歷 133
參考文獻 [1] 廖偉辰,「工業馬達驅動系統節電分析」,核研所─能源簡析,2017年4月。
[2] 陳婉箐,「加速馬達產業升級,跨入高效新世代」,工業技術與資訊月刊,304期,2017年02月號。
[3] 經濟部能源局,「急起直追,2016年與全球先進國家同步」,能源報導-封面故事三,2014年10月號。
[4] A. T. D. Almeida, F. J. T. E. Ferreira and A. Q. Duarte, “Technical and Economical Considerations on Super High-Efficiency Three-Phase Motors,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1274-1285, Apr. 2014.
[5] 吳長恩,“具寬速度控制範圍之同步磁阻馬達驅動器研製”,碩士論文,國立台北科技大學電機工程系,民國一百零五年。
[6] 黃雅琪,「永磁與磁阻馬達市場發展機會與挑戰」,機械工業雜誌,415期,2017年10月號。
[7] A. T. D. Almeida, “Electric Motors and Variable Speed Drives Efficiency – Adjusting MEPS to Technology Developments,” Motor Summit Zurich, 11/12 Oct. 2016.
[8] S. Taghavi and P. Pillay, “A sizing methodology of the synchronous reluctance motor for traction applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 2, pp. 329–340, Jun. 2014.
[9] “ABB SynRM motor & drive package – Super premium efficiency for HVAC application,” 8th edition of the european hpc infrastructure workshop, Mar. 2017
[10] T. Senjyu, T. Shingaki, and K. Uezato, “Sensorless vector control of synchronous reluctance motors with disturbance torque observer,” IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 402–407, Apr. 2001.
[11] G. Pellegrino, F. Cupertino, and C. Gerada, “Automatic design of synchronous reluctance motors focusing on barrier shape optimization,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1465–1474, Mar./Apr. 2015.
[12] A. Vagati, M. Pastorelli, G. Franceschini, and S. C. Petrache, “Design of low-torque-ripple synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 758–765, Jul./Aug. 1998.
[13] F. J. W. Barnard, W. T. Villet, and M. J. Kamper, “Hybrid active-flux and arbitrary injection position sensorless control of reluctance synchronous machines,” IEEE Trans. Ind. Appl., vol. 51, no. 5, pp. 3899–3906, Sept./Oct. 2015.
[14] W. T. Villet and M. J. Kamper, “Variable-gear EV reluctance synchronous motor drives–an evaluation of rotor structures for position-sensorless control,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5732–5740, Oct. 2014.
[15] M. Ferrari, N. Bianchi, A. Doria, and E. Fornasiero, “Design of synchronous reluctance motor for hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3030–3040, Jul./Aug. 2015.
[16] I. H. Lin, M. F. Hsieh, H. F. Kuo, and M. C. Tsai, “Improved accuracy for performance evaluation of synchronous reluctance motor,” IEEE Trans. Magn., vol. 51, no. 11, Nov. 2015.
[17] N. Bianchi, M. Degano, and E. Fornasiero, “Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 187–195, Jan./Feb. 2015.
[18] C. T. Liu, B. Y. Chang, K. Y. Hung, and S. Y. Lin, “Cutting and punching impacts on laminated electromagnetic steels to the designs and operations of synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3515–3520, Jul./Aug. 2015.
[19] F. N. Isaac, A. A. Arkadan and A. El-Antably, “Characterization of axially laminated anisotropic-rotor synchronous reluctance motors,” IEEE Trans. Energy Convers., vol. 14, no. 3, pp. 506-611, Sep 1999.
[20] J. Kolehainen, “Synchronous reluctance motor with form blocked rotor,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 450-456, Jun. 2010.
[21] S. Cai, Jianxin. Shen, H. Hao, and M. Jin, “Design Methods of Transversally Laminated Synchronous Reluctance Mechines,” CES Trans. Electrical Machines and Systems, vol. 1, no. 2, pp. 164-173, 2017.
[22] V. Manzolini, D. D. Ru, and S. Bolognani, “An effective flux weakening control of a SyRM drive including MTPV operation,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2700–2709, May/ Jun. 2019.
[23] H. Hadla and S. Cruz, “Predictive stator flux and load angle control of synchronous reluctance motor drives operating in a wide speed range,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 6950–6959, Sep. 2017.
[24] X. Zhang and G. H. B. Foo, ‘‘Overmodulation of constant-switching frequency-based DTC for reluctance synchronous motors incorporating field-weakening operation,’’ IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 37–47, Jan. 2019.
[25] N. Bianchi, S. Bolognani, E. Carraro, M. Castiello, and E. Fornasiero, “Electric vehicle traction based on synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 4762–4769, Nov./ Dec. 2016.
[26] Y. Inoue, S. Morimoto, and M. Sanada, “A novel control scheme for maximum power operation of synchronous reluctance motors including maximum torque per flux control,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 115–121, Jan./Feb. 2011.
[27] A. Yousefi-Talouki, P. Pescetto, G. Pellegrino, and I. Boldea, “Combined active flux and high-frequency injection methods for sensorless direct-flux vector control of synchronous reluctance machines,” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2447–2457, Mar. 2018.
[28] R. R. Moghaddam, F. Magnussen, and C. Sadarangani, “Theoretical and experimental reevaluation of synchronous reluctance machine,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 6–13, Jan. 2010.
[29] J. Ahn et al., “Field weakening control of synchronous reluctance motor for electric power steering,” IET Elect. Power Appl., vol. 1, no. 4, pp. 565– 570, Jul. 2007.
[30] Y. Chen et al., “Improved flux-weakening control of IPMSMs based on torque feedforward technique,” IEEE Trans. Power Electron., vol. 33, no. 12, pp. 10970–10978, Dec. 2018.
[31] P. Y. Lin, W. T. Lee, S. W. Chen, J. C. Hwang, and Y. S. Lai, “Infinite speed drives control with MTPA and MTPV for interior permanent magnet synchronous motor,” in Proc. IECON, Nov. 2014, pp. 668–674.
[32] P. Y. Lin and Y. S. Lai, “Voltage control technique for the extension of DC-link voltage utilization of finite-speed SPMSM drives,” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3392–3402, Sep. 2012.
[33] D. Stojan, D. Drevensek, Z. Plantic, B. Grcar, and G. Stumberger, “Novel field-weakening control scheme for permanent-magnet synchronous machines based on voltage angle control,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2390–2401, Nov./Dec. 2012.
[34] Z. Zhang, C. Wang, M. Zhou, and X. You, “Flux-weakening in PMSM drives: Analysis of voltage angle control and the single current controller design,” IEEE J. Emerging Sel. Topics Power Electron., vol. 7, no. 1, pp. 437–445, Mar. 2019.
[35] T. S. Kwon and S. K. Sul, “Novel antiwindup of a current regulator of a surface-mounted permanent-magnet motor for flux-weakening control,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1293–1300, Sep./Oct. 2006.
[36] W. Xu, M. M. Ismail, Y. Liu, and M. R. Islam, “Parameter optimization of adaptive flux-weakening strategy for permanent-magnet synchronous motor drives based on particle swarm algorithm,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 12128–12140, Dec. 2019.
[37] R. Sepulchre, T. Devos, F. Jadot, and F. Malrait, “Antiwindup design for induction motor control in the field weakening domain,” IEEE Trans. Control Syst. Technol., vol. 21, no. 1, pp. 52–66, Jan. 2013.
[38] Z. Dong et al., “Operating point selected flux-weakening control of induction motor for torque-improved high-speed operation under multiple working conditions,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 12011–12023, Dec. 2019.
[39] T. S. Kwon, K. Y. Choi, M. S. Kwak, and S. K. Sul, “Novel fluxweakening control of an IPMSM for quasi-six-step operation,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1722–1731, Nov./Dec. 2008.
[40] Y. C. Kwon, S. Kim, and S. K. Sul, “Six-step operation of PMSM with instantaneous current control,” IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2614–2625, Jul./Aug. 2014.
[41] S. Y. Jung, C. C. Mi, and K. Nam, “Torque control of IPMSM in the field-weakening region with improved dc-link voltage utilization,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3380–3387, Jun. 2015.
[42] J. Liu, W. Zhang, F. Xiao, and S. Gao, “Six-step mode control of IPMSM for railway vehicle traction eliminating the DC offset in input current,” IEEE Trans. Power Electron., vol. 34, no. 9, pp. 8981–8993, Sep. 2019.
[43] J. Park, S. Jung, and J. I. Ha, “Variable time step control for six-step operation in surface-mounted permanent magnet machine drives,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1501–1513, Feb. 2018.
[44] T. Miyajima, H. Fujimoto, and M. Fujitsuna, “A precise model-based design of voltage phase controller for IPMSM,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5655–5664, Dec. 2013.
[45] M. S. Huang, K. C. Chen, C. H, Chen, Z. F. Li, and S. W. Hung, “Torque control in constant power region for IPMSM under six-step voltage operation,” IET Elect. Power Appl., vol. 13, no. 2, pp. 181–189, Feb. 2019.
[46] J. Fei and Y. Chu, “Double hidden layer recurrent neural adaptive global sliding mode control of active power filter,” IEEE Trans. Power Electron., vol. 35, no. 3, pp. 3069–3084, Mar. 2020.
[47] H. Jin and X. Zhao, “Complementary sliding mode control via Elman neural network for permanent magnet linear servo system,” IEEE Access, vol. 7, pp. 82183–82193, 2019.
[48] L. Feng, M. Deng, S. Xu, and D. Huang, “Speed regulation for PMSM drives based on a novel sliding mode controller,” IEEE Access, vol. 8, pp. 63577-63584, 2020.
[49] F. F. M. El-Sousy, “Adaptive dynamic sliding-mode control system using recurrent RBFN for high-performance induction motor servo drive,” IEEE Trans. Ind. Informat, vol. 9, no. 4, pp. 1922–1936, Nov. 2013.
[50] F. J. Lin, Y. C. Hung, and M. T. Tsai, “Fault-tolerant control for six-phase PMSM drive system via intelligent complementary sliding-mode control using TSKFNN-AMF,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5747–5762, Dec. 2013.
[51] F. J. Lin, S. G. Chen, and C. W. Hsu, “Intelligent backstepping control using recurrent feature selection fuzzy neural network for synchronous reluctance motor position servo drive system,” IEEE Trans. Fuzzy Syst., vol. 27, no. 3, pp. 413–427, Mar. 2019.
[52] M. Y. Wei and T. H. Liu, “Design and implementation of an online tuning adaptive controller for synchronous reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3644– 3657, Sep. 2013.
[53] C. H. Lin, “Adaptive recurrent fuzzy neural network control for synchronous reluctance motor servo drive,” IET Electr. Power Appl., vol. 151, no. 6, pp. 711–724, Nov. 2004.
[54] T. H. Liu, H. S. Haslim, and S. K. Tseng, “Predictive controller design for a high-frequency injection sensorless synchronous reluctance drive system,” IET Electr. Power Appl., vol. 11, no. 5, pp. 902–910, May 2017.
[55] E. Daryabeigi, A. Mirzaei, H. A. Zarchi, and S. Vaez-Zadeh, “Enhanced emotional and speed deviation control of synchronous reluctance motor drives,” IEEE Trans. on Energy Conver, vol. 34, no. 2, pp. 604–612, Jun. 2019.
[56] 許哲瑋,“同步磁阻馬達驅動系統之智慧型每安培最大轉
矩追蹤控制”,碩士論文,國立中央大學電機系,民國一百零八年。
[57] 黃泰寅,“新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發”,碩士論文,國立中央大學電機系,民國一百零六年。
[58] TMS320F2807x Piccolo Microcontrollers Datasheet, Texas Instruments.
[59] P. Pillay, R. G. Haarley, and E. J. Odendal, “A comparison between star and delta connected induction motors when supplied by current source inverters,” Electric Power Systems Research., vol. 8, no. 1, pp. 41–51, Oct. 1984.
[60] Z. Haisen, L. Xiaofang, H. Jia, and L. Yingli, “The influence of wye and delta connection on induction motor losses taking slot opening and skew effect into account,” Proc. IEEE International Electric Machines and Drives Conference, May 2009.
[61] M. N, Ibrahim, P. Sergeant, and E. E. M. Rashad, “Combined Star-Delta Windings to Improve Synchronous Reluctance Motor Performance,” IEEE Trans. Energy Convers., vol. 31, no. 4, pp. 1479–1487, Dec. 2016.
[62] J. M. Kim and S. K. Sul, “Speed control of interior permanent magnet synchronous motor drive for the flux-weakening operation,” IEEE Trans. Ind. Appl., vol. 33, no. 1, pp. 43–48, Jan./Feb. 1997.
[63] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[64] Z. Qu, R. A. Hull, and J. Wang, “Globally Stabilizing Adaptive Control Design for Nonlinearly-Parameterized Systems,” IEEE Trans. Autom. Control., vol. 51, no. 6, pp. 1073–1079, Jun. 2006.
[65] 陳世剛,“利用函數連結放射狀基底函數網路於適應性步階迴歸控制六相永磁同步馬達定位驅動系統”,碩士論文,國立中央大學電機系,民國一百零五年。
[66] H. A. Zarchi, J. Soltani, and G. A. Markadeh, “Adaptive input-output feedback linearization-based torque control of synchronous reluctance motor without mechanical sensor,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 375–384, Jan. 2010.
[67] Y. A. I. Mohamed and Tsing K. Lee, “Adaptive self-tuning MTPA vector controller for IPMSM drive system,” IEEE Trans. Energy Convers, vol. 21, no. 3, pp. 636–644, Sep. 2006.
[68] 許效豪,“無轉軸偵測元件同步磁阻電動機直接轉矩控制驅動系統之研究”,碩士論文,國立臺灣科技大學電機工程系,民國九十四年。
[69] Y. Huang, Z. Zhang, W. Huang, and S. Chen, “DC-link voltage regulation for wind power system by complementary sliding mode control,” IEEE Access, vol. 7, pp. 22773-22780, 2019.
[70] F. J. Lin, M. S. Huang, S. G. Chen, and C. W. Hsu, “Intelligent maximum torque per ampere tracking control of synchronous reluctance motor using recurrent Legendre fuzzy neural network,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 12080–12094, Dec. 2019.
[71] R. J. Wai, J. X. Yao, and J. D. Lee, ‘‘Backstepping fuzzy-neural-network control design for hybrid maglev transportation system,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 2, pp. 302–317, Feb. 2015.
[72] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[73] M. P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics-Selected Problems. New York: Academic, 2002.
[74] Z. Q. Zhu and D. Howe, “Electrical machines and drives for electric, hybrid, and fuel cell vehicles,” Proc. IEEE, vol. 95, no. 4, pp. 746–765, 2007.
[75] S. H. Kim, Electric Motor Control: DC, AC, and BLDC Motors. Amsterdam, Netherlands: Elsevier, 2017.
[76] E. Daryabeigi, H. A. Zarchi, G. R. A. Markadeh, J. Soltani, and F. Blaabjerg, “Online MTPA control approach for synchronous reluctance motor drives based on emotional controller,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2157–2166, Apr. 2015.
[77] M. N. Ibrahim, P. Sergeant, and E. M. Rashad, “Relevance of including saturation and position dependence in the inductances for accurate dynamic modelling and control of SynRMs,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 151–160, Jan./Feb. 2017.
[78] A. Yousefi-Talouki, P. Pescetto, and G. Pellegrino, “Sensorless direct flux vector control of synchronous reluctance motors including standstill, MTPA, and flux weakening,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3598–3608, Jul./Aug. 2017.
[79] T. Matsuo and T. A. Lipo, “Field oriented control of synchronous reluctance machine,” Proceedings of IEEE Power Electronics Specialist Conference - PESC ′93, Seattle, WA, USA, 1993, pp. 425-431.
[80] X. Zhang, G. H. B. Foo, D. M. Vilathgamuwa, and D. L. Maskell, “An improved robust field-weakeaning algorithm for direct-torque-controlled snchronous-reluctance-motor drives,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3255–3264, May 2015.
[81] D. L. Logan, A First Course in the Finite Element Method, MA: Cengage Learning, 2017.
[82] 賴要任,鍾國光,電機電子有限元素法入門,全華圖書,台北市,民國七十七年十一月。
[83] ANSYS, Module 01: Basics Introduction to ANSYS Maxwell, ANSYS,Inc, 2016.
[84] JFE, Electrical Steel Sheets, JFE Steel Corporation, 2015.
[85] A. Kenny, A. Palazzolo, G. T. Montague, and A. F. Kascak, “Theory and Test Correlation for Laminate Stacking Factor Effect on Homopolar Bearing Stiffness.” ASME, Engineering for Gas Turbines and Power, vol. 126, no. 1, pp. 142-146, Jan. 2004.
[86] C. E. Hwang, Y. Lee, and S. K. Sul, “Analysis on Position Estimation Error in Position-Sensorless Operation of IPMSM Using Pulsating Square Wave Signal Injection,” IEEE Trans Ind. Informat., vol. 55, no. 1, pp. 458-470, 2019.
[87] F. J. Lin, M. S. Huang, S. G. Chen, C. W. Hsu, and C. H. Liang “Adaptive backstepping control for synchronous reluctance motor based on intelligent current angle control,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7465–7479, Jul. 2020.
[88] A. S. O. Ogunjuyigbe, A. A. Jimoh, D. V. Nicolae, and E. S. Obe, “Analysis of synchronous reluctance machine with magnetically coupled three-phase windings and reactive power compensation,” IET Electr. Power Appl., vol. 4, no. 4, pp. 291–303, Apr. 2009.
[89] M. Ferrari, N. Bianchi, and E. Fornasiero, “Analysis of rotor saturation in synchronous reluctance and PM-assisted reluctance motors,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 169–177, Jan. 2015.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2020-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明