博碩士論文 107521097 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.147.89.105
姓名 蔡承翰(Chen-Han Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 互補式金氧半導體C頻段F類與S頻段反F類壓控振盪器暨C頻段次取樣鎖相迴路之研製
(Implementations on CMOS C-band Class-F, S-band Inverse-Class-F Voltage Control Oscillators, and C-band Sub-sampling Phase-locked-loop)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本篇論文擬研究收發機中本地振盪源的相關電路,設計應用於第五代行動通訊(5th generation wireless systems)之n77、n79頻段本地振盪電路。本論文將先介紹振盪器中F類與反F類操作之優缺點,接著進行傳統電荷幫浦鎖相迴路與次取樣技術的分析,在鎖定的狀態下除頻器不會運作,因此不會貢獻相位雜訊至輸出端,此外由於缺少除N之路徑,相位頻率偵測器與電荷幫浦之雜訊不會被放大N 2倍,最後實現低功耗、低相位雜訊的次取樣鎖相迴路。論文一共實現三種電路,皆使用tsmcTM 0.18 μm互補式金氧半導體製程製作,內容如下所述:
低相位雜訊C頻段F類壓控振盪器
本電路實作具有低相位雜訊特性之F類控振盪器,使用變壓器耦合實作F類共振腔,並獨立主、副線圈中心抽頭偏壓以優化直流功耗。電路功耗為 8.7 - 10.3 mW,可調頻寬為 6.03 - 7.10 GHz (16.3%),相位雜訊在 1-MHz 偏移頻率下最低為−121.86 dBc/Hz,達到 FoM最高為−187.5,晶片面積為 0.805 imes0.961 mm2。
低相位雜訊S頻段反F類壓控振盪器
本電路實作具有低功耗、低相位雜訊特性之反F類控振盪器,使用變壓器耦合實作F類共振腔,並使用電流再利用技術以節省直流功耗。電路功耗為1.89 mW,可調頻寬為 3.196 - 3.608 GHz (12.1%),相位雜訊在 1-MHz 偏移頻率下最低為−124.7 dBc/Hz,達到 FoM最高為−187.5,晶片面積為 0.805 imes0.961 mm2。
利用F類壓控振盪器於C頻段次取樣鎖相迴路
本電路利用F類壓控振盪器,改善振盪器之相位雜訊,加入鎖頻迴路與次取樣迴路實現整數型C頻段次取樣鎖相迴路,於章節中完整介紹各子電路之用途及數學分析,整體電路功耗為28.2 mW,不含鎖頻迴路之功耗為10.2 mW,最後利用雜訊轉移函數計算整體系統之相位雜訊,晶片面積為1.023 imes 1.283 mm2。
摘要(英) This thesis aims to design local oscillator (LO) circuits for the signal source of the fifth generation (5G) cellular communications in n77 and n79 band transceivers. In this thesis, we demonstrate the pros and cons between Class-F and Class-F-1 voltage control oscillator. It starts with classical charge-pump PLL (CPPLL) and sub-sampling PLL (SSPLL) system analysis. And the SSPLL is divider-less in the locked state, thus it will not contribute noise to the output. In addition, the analysis shows that the noises of PD and CP are not multiplied by N 2 to the output. Finally, a low power and low phase noise fully integrated 4.7 GHz SSPLL is implemented in 0.18-μm CMOS.
A low phase noise C-band Class-F VCO
Class-F oscillator has the features of high power efficiency and low phase noise. In this work, we use transformer coupling technique to realize Class-F LC-tank, and separate the center tape of the primary and secondary coils. The DC power consumption will be optimized to 8.7 - 10.3 mW. The measured tuning range is 6.03 - 7.10 GHz (16.3 %). The lowest phase noise at 1-MHz offset frequency is −121.86 dBc/Hz which is correspondent to the FoM of −187.5 dBc/Hz. The chip size includes all pads is 0.805 imes0.961 mm2.
A low phase noise S-band inverse-Class-F VCO
The inverse-Class-F oscillator has the features of low power consumption and low phase noise. In this work, we use transformer coupling technique to realize inverse-Class-F LC-tank, and use current reuse technique to reduce the power consumption. The oscillator consumes the dc power of 1.89 mW. The measured tuning range is 3.196 - 3.608 GHz (12.1 %). The lowest phase noise at 1-MHz offset frequency is −124.7 dBc/Hz which is correspondent to the FoM of −187.5 dBc/Hz. The chip size includes all pads is 0.805 imes 0.961 mm2.
A C-band sub-sampling PLL with class-F voltage controlled oscillator
The PLL adopted a Class-F VCO to improve the phase noise performance. Additionally, frequency-locked-loop and sub-sampling-loop are used to realize interger-N C-band SSPLL. This thesis analyzed the mathematical model of the CPPLL and SSPLL. And compare the noise contributions of each loop component. The PLL consumed the dc power of 28.2 mW. Without the FLL, the dc power is 10.2 mW. Finally, we calculate the overall phase noise of the system by noise transfer function. The chip size includes all pads is 1.023 imes 1.283 mm2.
關鍵字(中) ★ 壓控振盪器
★ 鎖相迴路
★ 次取樣技術
關鍵字(英) ★ Voltage Control Oscillators
★ Phase-locked-loop
★ Sub-sampling
論文目次 摘要 I
ABSTRACT III
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 1
1-3 章節簡介 1
第二章 低相位雜訊C頻段F類壓控振盪器 3
2-1 壓控振盪器導論 3
2-2 尾濾波及二次諧波共振簡介 4
2-3 F類壓控振盪器設計 10
2-4 量測與模擬結果 14
2-5 結果與討論 21
第三章 低雜訊S頻段反F類壓控振盪器 22
3-1 反F類壓控振盪器簡介 22
3-2 反F類壓控振盪器設計 22
3-3 量測與模擬結果 29
3-4 CLASS-F 與 INVERSE-CLASS-F 比較 39
第四章 利用F類壓控振盪器於C頻段次取樣鎖相迴路 40
4-1 研究現況 40
4-2 電荷幫浦鎖相迴路 41
4-2-1 鎖相迴路架構簡介 41
A. 壓控振盪器 42
B. 除頻器 42
C. 相位頻率偵測器 44
D. 電荷幫浦 44
E. 迴路濾波器 47
4-2-2 鎖相迴路迴路分析 49
4-3 次取樣技術分析 54
4-4 應用於C頻段次取樣鎖相迴路 57
4-4-1 壓控振盪器 59
4-4-2 鎖頻迴路 64
A. 電流模式邏輯除頻器 64
B. 雙轉單緩衝放大器 65
C. 真單一相位時脈除頻器 66
D. 相位頻率偵測器 67
E. 電荷幫浦 69
4-4-3 次取樣迴路 70
A. 次取樣相位偵測器 70
B. 電壓轉電流/電荷幫浦 72
C. 脈衝產生器 72
D. 迴路濾波器 73
4-4-4 全擺幅緩衝器 75
4-5 結果與討論 77
第五章 結論 82
5-1 結論 82
5-2 未來方向 83
參考文獻 84
參考文獻 [1] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[2] J. Groszkowski, “The Interdependence of Frequency Variation and Harmonic Content, and the Problem of Constant-Frequency Oscillators,” in Proc. IRE, vol. 21, no. 7, pp. 958-981, July 1933.
[3] E. Hegazi, H. Sjoland and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, Dec. 2001.
[4] M. Shahmohammadi, M. Babaie and R. B. Staszewski, “A 1/f Noise Upconversion Reduction Technique for Voltage-Biased RF CMOS Oscillators,” IEEE J. Solid-State Circuits, vol. 51, no. 11, pp. 2610-2624, Nov. 2016.
[5] D. Murphy, H. Darabi and H. Wu, “Implicit Common-Mode Resonance in LC Oscillators,” IEEE J. Solid-State Circuits, vol. 52, no. 3, pp. 812-821, March 2017.
[6] M. Babaie and R. B. Staszewski, “A Class-F CMOS Oscillator,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3120-3133, Dec. 2013.
[7] Huijung Kim, Seonghan Ryu, Yujin Chung, Jinsung Choi and Bumman Kim, “A low phase-noise CMOS VCO with harmonic tuned LC tank,” IEEE Trans Microw. Theory Techn., vol. 54, no. 7, pp. 2917-2924, July 2006.
[8] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.
[9] A. Bevilacqua, F. P. Pavan, C. Sandner, A. Gerosa and A. Neviani, “Transformer-Based Dual-Mode Voltage-Controlled Oscillators,” IEEE Trans. Circuits Syst. II, vol. 54, no. 4, pp. 293-297, April 2007.
[10] A. Goel and H. Hashemi, “Frequency Switching in Dual-Resonance Oscillators,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 571-582, March 2007.
[11] M. Babaie and R. B. Staszewski, “An Ultra-Low Phase Noise Class-F2 CMOS Oscillator With 191 dBc/Hz FoM and Long-Term Reliability,” IEEE J. Solid-State Circuits, vol. 50, no. 3, pp. 679-692, March 2015.
[12] M. Shahmohammadi, M. Babaie and R. B. Staszewski, “Tuning Range Extension of a Transformer-Based Oscillator Through Common-Mode Colpitts Resonance,” IEEE Trans. Circuits Syst. I, vol. 64, no. 4, pp. 836-846, April 2017.
[13] A. Mazzanti and P. Andreani, “A Push–Pull Class-C CMOS VCO,” IEEE J. Solid-State Circuits, vol. 48, no. 3, pp. 724-732, March 2013.
[14] C. Lim, J. Yin, P. Mak, H. Ramiah and R. P. Martins, “An inverse-class-F CMOS VCO with intrinsic-high-Q 1st- and 2nd-harmonic resonances for 1/f2-to-1/f3 phase-noise suppression achieving 196.2 dBc/Hz FOM,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2018, pp. 374-376.
[15] X. Gao, E. A. M. Klumperink, M. Bohsali and B. Nauta, “A Low Noise Sub-Sampling PLL in Which Divider Noise is Eliminated and PD/CP Noise is Not Multiplied by N2,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3253-3263, Dec. 2009.
[16] X. Gao, E. A. M. Klumperink, P. F. J. Geraedts and B. Nauta, “Jitter Analysis and a Benchmarking Figure-of-Merit for Phase-Locked Loops,” IEEE Trans. Circuits Syst. II, vol. 56, no. 2, pp. 117-121, Feb. 2009.
[17] X. Gao, E. A. M. Klumperink, G. Socci, M. Bohsali and B. Nauta, “Spur-reduction techniques for PLLs using sub-sampling phase detection,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2010, pp. 474-475.
[18] J. Lee and H. Wang, “Study of Subharmonically Injection-Locked PLLs,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009.
[19] J. Tsai, C. Hsu and C. Chao, “An X-band 9.75/10.6 GHz low-power phase-locked loop using 0.18-μm CMOS technology,” in Proc. 10th Eur. Microw. Integr. Circuits Conf. (EuMIC), Paris, 2015, pp. 238-241.
[20] K. Ha, J. Lee, S. Park and D. Baek, “A dual-mode signal generator using PLL for X-band radar sensor applications,” in Proc. IEEE Radio Freq. Integr. Technol. Symp. (RFIT), Seoul, 2017, pp. 4-6.
[21] J. Tsai, C. Chao and H. Shih, “A X-band fully integrated CMOS frequency synthesizer,” in Proc. Asia Pacific Microw. Conf., Kaohsiung, 2012, pp. 1226-1228.
[22] W. El-Halwagy, A. Nag, P. Hisayasu, F. Aryanfar, P. Mousavi and M. Hossain, “A 28-GHz Quadrature Fractional-N Frequency Synthesizer for 5G Transceivers With Less Than 100-fs Jitter Based on Cascaded PLL Architecture,” IEEE Trans Microw. Theory Techn., vol. 65, no. 2, pp. 396-413, Feb. 2017.
[23] S. Min, T. Copani, S. Kiaei and B. Bakkaloglu, “A 90-nm CMOS 5-GHz Ring-Oscillator PLL With Delay-Discriminator-Based Active Phase-Noise Cancellation,” IEEE J. Solid-State Circuits, vol. 48, no. 5, pp. 1151-1160, May 2013.
[24] C. Lu, H. Hsieh and L. Lu, “A Low-Power Quadrature VCO and Its Application to a 0.6-V 2.4-GHz PLL,” IEEE Trans. Circuits Syst. I, vol. 57, no. 4, pp. 793-802, April 2010.
[25] W. Chiu, Y. Huang and T. Lin, “A 5GHz phase-locked loop using dynamic phase-error compensation technique for fast settling in 0.18-µm CMOS,” in Symposium on VLSI Circuits, Kyoto, Japan, 2009, pp. 128-129.
[26] Z. Zhang, G. Zhu and C. Patrick Yue, “A 0.65-V 12–16-GHz Sub-Sampling PLL With 56.4-fsrms Integrated Jitter and −256.4-dB FoM,” IEEE J. Solid-State Circuits, vol. 55, no. 6, pp. 1665-1683, June 2020.
[27] M. Raj, A. Bekele, D. Turker, P. Upadhyaya, Y. Frans and K. Chang, “A 164fsrms 9-to-18GHz sampling phase detector based PLL with in-band noise suppression and robust frequency acquisition in 16nm FinFET,” in Symposium on VLSI Circuits, Kyoto, 2017, pp. C182-C183.
[28] A. Tharayil Narayanan et al., “A Fractional-N Sub-Sampling PLL using a Pipelined Phase-Interpolator With an FoM of -250 dB,” IEEE J. Solid-State Circuits, vol. 51, no. 7, pp. 1630-1640, July 2016.
[29] D. Lee and P. P. Mercier, “AMASS PLL: An Active-Mixer-Adopted Sub-Sampling PLL Achieving an FOM of −255.5DB and a Reference Spur of −66.6DBC,” in IEEE Symposium on VLSI Circuits, Honolulu, HI, 2018, pp. 181-182.
[30] D. Liao, F. F. Dai, B. Nauta and E. A. M. Klumperink, “A 2.4-GHz 16-Phase Sub-Sampling Fractional-N PLL With Robust Soft Loop Switching,” IEEE J. Solid-State Circuits, vol. 53, no. 3, pp. 715-727, March 2018.
[31] W. Chang, P. Huang and T. Lee, “A Fractional-N Divider-Less Phase-Locked Loop With a Subsampling Phase Detector,” IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 2964-2975, Dec. 2014.
[32] A. Elkholy, M. Talegaonkar, T. Anand and P. Kumar Hanumolu, "Design and Analysis of Low-Power High-Frequency Robust Sub-Harmonic Injection-Locked Clock Multipliers,” IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 3160-3174, Dec. 2015.
[33] A. Elkholy, A. Elmallah, M. Elzeftawi, K. Chang and P. K. Hanumolu, “10.6 A 6.75-to-8.25GHz, 250fsrms-integrated-jitter 3.25mW rapid on/off PVT-insensitive fractional-N injection-locked clock multiplier in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2016, pp. 192-193.
[34] D. Lee and P. P. Mercier, “A Sub-mW 2.4-GHz Active-Mixer-Adopted Sub-Sampling PLL Achieving an FoM of −256 dB,” IEEE J. Solid-State Circuits, vol. 55, no. 6, pp. 1542-1552, June 2020.
[35] S. Ye, L. Jansson, and I. Galton, “A multiple-crystal interface PLL with VCO realignment to reduce phase noise,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1795–1803, Dec. 2002.
[36] Z. Yang, Y. Chen, S. Yang, P. Mak and R. P. Martins, “16.8 A 25.4-to-29.5GHz 10.2mW Isolated Sub-Sampling PLL Achieving -252.9dB Jitter-Power FoM and -63dBc Reference Spur,” in IEEE Int. Solid-State Circuits Conf, San Francisco, CA, USA, 2019, pp. 270-272.
[37] T. Siriburanon et al., “A 2.2 GHz -242 dB-FOM 4.2 mW ADC-PLL Using Digital Sub-Sampling Architecture,” IEEE J. Solid-State Circuits, vol. 51, no. 6, pp. 1385-1397, June 2016.
[38] Y. Hu et al., “17.6 A 21.7-to-26.5GHz Charge-Sharing Locking Quadrature PLL with Implicit Digital Frequency-Tracking Loop Achieving 75fs Jitter and −250dB FoM,” in IEEE Int. Solid-State Circuits Conf, San Francisco, CA, USA, 2020.
[39] B. Razavi, Design of CMOS Phase-Locked Loops: From Circuit Level to Architecture Level. Cambridge University Press, 2020.
[40] 劉深淵,楊清淵,鎖相迴路,滄海書局,民國一百年。
[41] 林書佑, “互補型自我注入式四相位壓控振盪器暨X頻段壓控振盪器整合除頻器與X頻段鎖相迴路之研製,” 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2017.
[42] 詹凱鈞, “應用於C頻段之互補式金氧半導體低相位雜訊C類壓控振盪器暨變壓器耦合四相位壓控振盪器暨利用F類壓控振盪器於C頻段之整數型鎖相迴路暨X頻段III-V族高功率振盪器之研製,” 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2018.
[43] 莊志成, “X頻段互補式金氧半導體四相位壓控振盪器與整數型鎖相迴路暨氮化鎵高功率及高效率壓控振盪器之研製,” 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2019.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2020-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明