博碩士論文 107521105 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.145.180.101
姓名 潘星智(Xing-Zhi Pan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用傳輸線基全通網路具損耗補償之全差動式Ka頻段相位偏移器
(Fully-Differential Ka-Band Phase Shifters Using Transmission-Line-Based All-Pass Networks Featuring Loss Compensation)
相關論文
★ 分佈式類比相位偏移器之設計與製作★ 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升
★ 全通網路相位偏移器之設計與製作★ 使用可調式負載及面積縮放技巧提升功率放大器之效率
★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現★ 應用於極座標發射機之高效率波包放大器與功率放大器
★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現★ 鐵電可變電容之設計與製作
★ 用於功率放大器效率提升之鐵電基可調式匹配網路★ 基於全通網路之類比式及數位式相位偏移器
★ 使用鐵電可變電容及PIN二極體之頻率可調天線★ 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作
★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器★ 具矽基板貫孔之鐵電可變電容的製作與量測
★ 矽基板貫孔的製作和量測★ 使用鐵電可變電容之頻率可調微帶貼片天線
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Ka頻段有不少重要應用,例如在28 GHz與39 GHz頻段的第五代行動通訊與在35 GHz的雲雷達。無論在第五代行動通訊或雷達等應用中,相位陣列都扮演重要角色。在相位陣列中,相位偏移器則是不可或缺的組件。在本論文中,我們採用傳輸線基全通網路架構,並使用TSMC 0.18-μm CMOS製程實現操作於35 GHz的四位元與五位元數位式相位偏移器。在電路中,我們引入交叉耦合對來產生負轉導,以補償被動元件所造成的損耗。
在第二章中,首先介紹傳輸線基全通網路架構及其設計公式的推導。次節介紹互補式交叉耦合對之等效電路,最後以模擬結果驗證引入交叉耦合對確實能降低全通相移器的植入損耗。
在第三章中,我們以前述的具損耗補償之傳輸線基全通網路來設計一個四位元相位偏移器。其中,22.5°、45°及90°相移級採用全差動式傳輸線基全通網路架構,180°相移級採用一對單刀雙擲開關來實現;晶片面積為1×2 mm2。模擬結果顯示,在26.7 GHz 至38.8 GHz(36.9%頻寬),均方根相位誤差小於2°,振幅誤差在±1 dB內,植入損耗低於11.7 dB。量測結果顯示,所有狀態的相移量皆有變大,造成均方根相位誤差變大至22.5°;在Ka頻段內植入損耗僅低於24.8 dB,與模擬結果相差甚多。在此設計,電路中的交叉耦合對應該在所有狀態下皆有同樣的直流電流通過;但在量測時,我們發現交叉耦合對只有在on state有電流,而在off states沒有電流。交叉耦合對未正確工作是植入損耗變大很多的可能原因。此外,經重新模擬,我們發現交叉耦合對也可能有多出原先未預期的寄生電容,因而造成相位誤差的增加。
在第四章中,我們採用相同的傳輸線基全通網路架構設計一個五位元相位偏移器;設計流程與前章相同,差異在於使用較低的系統阻抗及傳輸線特徵阻抗,期望傳輸線造成的損耗可以較低。模擬結果顯示,在33.0 GHz 至39.4 GHz(17.7%頻寬),均方根相位誤差小於3°,振幅誤差在±0.85 dB內,植入損耗低於14.1 dB。然而,量測結果顯示,相移量偏差甚多,均方根相位誤差變差至102.5°,而植入損耗在Ka頻段亦僅低於56.0 dB。在量測時,我們同樣發現交叉耦合對並未正確工作。經重新模擬後,發現加入寄生元件於交叉耦合對中,可使響應於低頻與量測結果較為貼合。但不幸地,量測結果與模擬結果相差甚多的確切原因仍未找到。
本論文成功設計了使用具損耗補償之傳輸線基全通網路的全差動式數位式相位偏移器;然而量測結果與模擬結果相差甚多。經過重新模擬,已經可以推知造成此差異的部分原因。
摘要(英) There are quite a few notable applications in Ka band, such as the fifth-generation (5G) mobile communications at 28 GHz and 39 GHz and the cloud radar at 35 GHz. In both 5G communication and radar applications, phased arrays play important roles. Phase shifters are indispensable components in a phased array. In this thesis, 35-GHz 4-bit and 5-bit digital phase shifters are designed by adopting transmission-line-based all-pass network topology and implemented using TSMC 0.18-μm CMOS process. Moreover, cross-coupled pairs are incorporated in the phase shifter design to provide negative transconductance and thereby compensate the loss resulting from the passive components.
In Chapter 2, transmission-line-based all-pass network is introduced and its design equations are derived. Next, the equivalent circuit for complementary cross-coupled pair is introduced. Finally, simulations are performed to verify that, by incorporating cross-coupled pair, the insertion loss of the all-pass phase shifter could indeed be lowered.
In Chapter 3, a 4-bit phase shifter is designed using the aforementioned transmission-line-based all-pass network with loss compensation. The 22.5°, 45°, and 90° phase-shifting stages assume the topology of fully-differential transmission-line-based all-pass network, whereas 180° phase-shifting stage is realized by a pair of SPDT switches. The chip area is 1×2 mm2. Simulation results show that, between 26.7 GHz and 38.8 GHz (36.9% bandwidth), the RMS phase error is less than 2°, the amplitude error is within ±1 dB, and the insertion loss is less than 11.7 dB. However, measurement results show that, for all 16 states, the phase shifts are larger than expected, causing the RMS phase error to deteriorate to 22.5°, and the insertion loss is only less than 24.8 dB within Ka band, which differs a lot from the simulation results. In this design, the cross-coupled pairs in the circuits should consume constant amount of DC current regardless of the phase-shifting states. However, during measurement, it is found that there is DC current flowing through the cross-coupled pair only when the phase shifting stage is in on state. In other words, the cross-coupled pairs did not function correctly, which may be one possible reason why the insertion loss increases so much. Moreover, after re-simulation, it is found that there may be additional parasitic capacitance in parallel with the cross-coupled pair, which is responsible for the increase of phase errors.
In Chapter 4, a 5-bit phase shifter is designed by adopting the same transmission-line-based all-pass network topology with the same design procedure, except that lower system impedance and characteristic impedance are used, hoping that the loss of the transmission lines may be lower. Simulation results show that, between 33.0 GHz and 39.4 GHz (17.7% bandwidth), the RMS phase error is less than 3°, the amplitude error is within ±0.85 dB, and the insertion loss is less than 14.1 dB. However, measurement results show that the phase shifts deviate a lot, leading to a deteriorated RMS phase error of 102.5°, and the insertion loss is only less than 56.0 dB within Ka band. During measurement, it is also found that the cross-coupled pairs in this circuit did not function correctly, either. After re-simulation, the simulated results could fit the measured results at low frequencies by adding parasitic components to the cross-coupled pairs. But unfortunately, actual cause for the large discrepancy between the simulated and measured results has yet to be found.
In this thesis, fully-differential digital phase shifters are successfully designed using transmission-line-based all-pass network with loss compensation. However, large discrepancies between the measured and simulated results are observed. Nonetheless, after re-simulations, part of the reasons for the large discrepancy has been proposed.
關鍵字(中) ★ 相位偏移器
★ 傳輸線基全通網路
★ 全差動式
★ 交叉耦合對
關鍵字(英) ★ phase shifter
★ transmission-line-based all-pass networks
★ fully differential
★ cross-coupled pair
論文目次 摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XV
第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究動機. . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . 4
第二章傳輸線基全通網路相位偏移器
架構簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 基於傳輸線的全通網路之電路分析. . . . . . . . . . 6
2.3 交叉耦合對之等效電路. . . . . . . . . . . . . . . . 10
2.4 相位偏移器之比較. . . . . . . . . . . . . . . . . . . 12
第三章使用具負轉導之傳輸線基全通網路之四位元相位偏
移器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 四位元相位偏移器架構設計. . . . . . . . . . . . . . 18
3.2.1 22.5°、45°及90°相位偏移器. . . . . . . . . . . . . . 22
3.2.2 180°相位偏移器. . . . . . . . . . . . . . . . . . . . 28
3.3 電路模擬與實測. . . . . . . . . . . . . . . . . . . . 32
3.3.1 模擬結果. . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 量測結果. . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 電路偵錯與重新模擬. . . . . . . . . . . . . . . . . . 44
3.4 結果與討論. . . . . . . . . . . . . . . . . . . . . . . 52
第四章使用傳輸線基全通網路具損耗補償之全差動式五位
元相位偏移器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 基於轉輸線的全通網路之參數值與電路架構. . . . . 56
4.3 電路模擬與實測. . . . . . . . . . . . . . . . . . . . 66
4.3.1 模擬結果. . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 量測結果. . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3 電路偵錯與重新模擬. . . . . . . . . . . . . . . . . . 78
4.4 結果與討論. . . . . . . . . . . . . . . . . . . . . . . 89
第五章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
參考文獻 [1] C.-W. Hsu, “Design of S-Band Passive and Active Digital Phase Shifter Chips,” Master dissertation, National Central University, 2019.
[2] H.-Y. Li, “Analog and Digital Phase Shifters Based on All-Pass Networks,” Master dissertation, National Central University, 2014.
[3] Q. Z. et al., “Design and performance of a wideband Ka-band 5-b MMIC phase
shifter,” IEEE Microw. Wireless Compon. Lett., vol. 27, pp. 482–484, May. 2017.
[4] Z.-M. T. W.-J. Tseng, C.-S. Lin and H. Wang, “A miniature switching phase
shifter in 0.18-μm CMOS,” in Proc. IEEE Asia Pacific Microw. Conf., pp. 2132–2135, Dec. 2009.
[5] F.-M. L. J.-H. Tsai and H. Xiao, “Low RMS phase error 28 GHz 5-bit switch
type phase shifter for 5G application,” Electron. Lett., vol. 54, no. 20, pp. 1184–1185, Oct. 2018.
[6] G. S. S. et al., “Low insertion loss, compact 4-bit phase shifter in 65 nm CMOS
for 5G applications,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 1, pp. 37–39, Jan. 2016.
[7] B.-W. Min and G. M. Rebeiz, “Single-ended and differential Ka-band BiCMOS
phased array front-ends,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2239–2250, Oct. 2008.
[8] J. G. Yang and K. Yang, “Ka-band 5-Bit MMIC phase shifter using InGaAs
PIN switching diodes,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 3, pp. 151–153, Mar. 2011.
[9] M. Jung and B.-W. Min, “A Compact K a-Band 4-bit Phase Shifter With Low Group Delay Deviation,” IEEE Microw. Wireless Compon. Lett, vol. 30, no. 4, pp. 414–416, Apr. 2020.
[10] Qorvo TGP2102.Retrieved from https://www.qorvo.com/products/p/TGP2102.
[11] J.-S. Fu, private communication, Jul. 2020.
[12] X. Tang and K. Mouthaan, “Design of large bandwidth phase shifters using common mode all-pass networks,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 55–57, Feb. 2012.
[13] D. Adler and R. Popovich, “Broadband switched-bit phase shifter using all-pass networks,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 265–268, Jul. 1991.
[14] I. J. Bahl and D. Conway, “L-and S-Band compact octave bandwidth 4-bit MMIC phase shifters,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 2, Feb. 2008.
[15] M. K. A. M. M. Meghdadi, M. Azizi and M.Atarodi, “A 6-bit CMOS phase
shifter for S-band,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 12, pp. 3519–3526, Dec. 2010.
[16] C.-H. K. D.-W. Kang, H. D. Lee and S. Hong, “Ku-band MMIC phase shifter
using a parallel resonator with 0.18-μm CMOS technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 294–301, Jan. 2006.
[17] Q. Xiao, “A compact L-band broadband 4-bit MMIC phase shifter with low phase error,” in Proceedings of 2011 European Microwave Integrated Circuits Conference, pp. 410–413, Oct. 2011.
[18] J.-J. Huang, “A Broadband 4-Bit CMOS Phase Shifter Using Magnetically Coupled All-Pass Networks,” Master dissertation, National Central University, 2015.
指導教授 傅家相(Jia-Shiang Fu) 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明