博碩士論文 107521114 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.133.138.31
姓名 洪維鴻(Wei-Hong Hong)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用傳輸線基全通網路之Ka頻段被動式相位偏移器
(Ka-Band Passive Phase Shifters Using Transmission-Line-Based All-Pass Networks)
相關論文
★ 分佈式類比相位偏移器之設計與製作★ 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升
★ 全通網路相位偏移器之設計與製作★ 使用可調式負載及面積縮放技巧提升功率放大器之效率
★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現★ 應用於極座標發射機之高效率波包放大器與功率放大器
★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現★ 鐵電可變電容之設計與製作
★ 用於功率放大器效率提升之鐵電基可調式匹配網路★ 基於全通網路之類比式及數位式相位偏移器
★ 使用鐵電可變電容及PIN二極體之頻率可調天線★ 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作
★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器★ 具矽基板貫孔之鐵電可變電容的製作與量測
★ 矽基板貫孔的製作和量測★ 使用鐵電可變電容之頻率可調微帶貼片天線
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 相位陣列常用於雷達系統中,而相位偏移器在相位陣列中是關鍵的電路元件之一。相位偏移器功能為提供各天線可調的相移量,用於調整波束的方向來達到波束掃描的效果。另外,在第五代行動通訊系統中,相位陣列也扮演重要的角色。在本論文中,我們採用傳輸線基全通網路架構,並使用TSMC 0.18-μm CMOS製程實現操作於35 GHz的四位元與五位元被動式相位偏移器。
在第二章中,我們採用傳輸線基全通網路架構,設計四位元被動式相移器。系統阻抗定為25 Ω,全通網路中傳輸線的特徵阻抗使用50 Ω。其中,22.5°、45°及90°相移級皆採用一級的傳輸線基全通網路架構,180°相移級則採用兩級中心頻率錯開的傳輸線基全通網路串接而成,以增加相位偏移量平坦的頻寬;相移器所佔的晶片面積為0.75×0.75 mm2。模擬結果顯示,在33.2 GHz 至40.8 GHz(20.5% 頻寬),均方根相位誤差小於3°,振幅誤差在 ±1 dB內,植入損耗低於16.9 dB。量測結果顯示,所有狀態的相移量皆有變小,造成均方根相位誤差變大甚多。均方根相位誤差最小值19.2°,發生在42.1 GHz;在Ka頻段內植入損耗僅低於24.4 dB。經重新模擬,我們發現若減少電路中MIM電容的電容值與電晶體的寄生電容值,將會使模擬結果與量測結果較為貼合。
在第三章中,我們採用相同的傳輸線基全通網路架構設計一個五位元相位偏移器;設計流程與前章相同,差異在於使用系統阻抗定為50 Ω及傳輸線特徵阻抗使用70.7 Ω。模擬結果顯示,在31.8 GHz 至41.7 GHz(26.9% 頻寬),均方根相位誤差小於3°,振幅誤差在 ±1 dB內,植入損耗低於18.9 dB。量測結果顯示,與第二章的四位元相移器相同,此相移器所有狀態的相移量皆有變小,造成均方根相位誤差變大甚多。均方根相位誤差最小值27.9°,發生在38.5 GHz;在Ka頻段內植入損耗僅低於26.6 dB。
本論文成功設計了使用傳輸線基全通網路的被動式相位偏移器;然而量測結果與模擬結果相差甚多。經過重新模擬,已經可以推知造成此差異的部分原因。
摘要(英) Phased arrays are often used in radars. Phase shifters are essential components in a phased array, where the function of a phase shifter is to provide adjustable phase shift to individual antenna elements, thus steering the beam direction for scanning purpose. Besides, in fifth-generation mobile communication, phased arrays also play important roles. In this thesis, 35-GHz 4-bit and 5-bit passive phase shifters are designed by adopting transmission-line-based all-pass network topology and implemented using TSMC 0.18-μm CMOS process.
In Chapter 2, a 4-bit passive phase shifter is designed using transmission-line-based all-pass network. The system impedance is set to be 25 Ω, whereas the characteristic impedance of the transmission lines used in the networks is chosen to be 50 Ω. In the phase shifter, the 22.5°, 45°, and 90° phase-shifting stages all use single-stage transmission-line-based all-pass network, whereas 180° phase-shifting stage is realized by cascading two stages of transmission-line-based all-pass networks with staggered center frequencies for wider phase-shift bandwidth. The phase shifter occupies a chip area of 0.75×0.75 mm2. Simulation results show that, between 33.2 GHz and 40.8 GHz (20.5% bandwidth), the RMS phase error is less than 3°, the amplitude error is within ±1 dB, and the insertion loss is less than 16.9 dB. However, measurement results show that, for all 16 states, the phase shifts are smaller than expected, causing the RMS phase error to increase a lot. The measured RMS phase error exhibits a minimum of 19.2° at 42.1 GHz. The insertion loss is only less than 24.4 dB within Ka band. After re-simulation, it is found that, if the capacitances of the MIM capacitors and parasitic capacitances of the MOSFETs are reduced, the simulation results would fit better to the measurement results.
In Chapter 3, a 5-bit phase shifter is designed by adopting the same transmission-line-based all-pass network topology with the same design procedure, except that the system impedance and the transmission-line characteristic impedance are chosen to be 50 Ω and 70.7 Ω, respectively. Simulation results show that, between 31.8 GHz and 41.7 GHz (26.9% bandwidth), the RMS phase error is less than 3°, the amplitude error is within ±1 dB, and the insertion loss is less than 18.9 dB. However, same as the phase shifter describe in Chapter 2, measurement results of this phase shifter show that the phase shifts for all states all become smaller than expected and the RMS phase error increases a lot. The measured RMS phase error exhibits a minimum of 27.9° at 38.5 GHz. The insertion loss is only less than 26.6 dB within Ka band.
In this thesis, passive digital phase shifters are successfully designed using transmission-line-based all-pass network. However, large discrepancies between the measured and simulated results are observed. Nevertheless, after re-simulations, part of the possible reasons for the large discrepancy has been proposed.
關鍵字(中) ★ 相位偏移器 關鍵字(英)
論文目次 摘要......................................I
Abstract..................................III
目錄......................................V
圖目錄....................................VII
表目錄....................................XI
第一章 緒論...............................1
1.1 研究動機..............................1
1.2 文獻回顧..............................2
1.3 論文架構..............................4
第二章 四位元傳輸線基全通網路相位偏移器......5
2.1 簡介..................................5
2.2 傳輸線基全通網路理論分析................6
2.3 電路設計..............................10
2.3.1 相位偏移量設計.......................10
2.3.2 180° 相位偏移器.....................11
2.3.3 切換式電容..........................16
2.4 模擬與量測結果.........................18
2.4.1 模擬結果............................18
2.4.2 量測結果............................29
2.4.3 重新模擬............................35
2.5 結論..................................41
第三章 五位元傳輸線基全通網路相位偏移器......43
3.1 簡介..................................43
3.2 電路設計..............................44
3.3 模擬與量測結果.........................50
3.3.1 模擬結果............................50
3.3.2 量測結果............................61
3.3.3 重新模擬............................67
3.4 結論..................................72
第四章 結論...............................75
參考文獻..................................77
參考文獻 [1] H.-Y. Li, “Analog and Digital Phase Shifters Based on All-Pass Network,” Master dissertation, National Central University, 2014.
[2] J.S. Hayden, and G.M. Rebeiz, “Very low-loss distributed X-band and Ka-band MEMS phase shifters using metal-air-metal capacitors,” IEEE Trans. Microw. Theory Tech., vol. 51,pp. 309--314, Jan. 2003.
[3] J. Qing, Y.-L. Shi, W. Li, Z.-S. Lai, Z.-Q. Zhu, and P.-S. Xin, “Ka-Band Distributed MEMS Phase Shifters on Silicon Using AlSi Suspended Membrane,” J. Microelectromech. Syst., vol. 13,pp. 542–549, Jun. 2004.
[4] B. Pillans et al., “Advances in RF MEMS phase shifters from 15 GHz to 35 GHz,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 1–3, Jun. 2012.
[5] S. Dey, and S. K. Koul, “10–35-GHz frequency reconfigurable RF MEMS 5-bit DMTL phase shifter uses push-pull actuation based toggle mechanism,” in Proc. IEEE Int. Microw. and RF Conf., pp. 21--24, Dec. 2014.
[6] N. Mazor, O. Katz, R. B. Yishay, D. Liu, A. Valdes Garcia, and D. Elad, “SiGe based Ka-band reflection type phase shifter for integrated phased array transceivers,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 1--4, May. 2016.
[7] R. B. Yishay and D. Elad, “Low loss 28 GHz digital phase shifter for 5G phased array transceivers,” in Proc. IEEE Asia–Pac. Microw. Conf., pp. 711--713, Nov. 2018.
[8] Y. Chang and B. A. Floyd, “A broadband reflection-type phase shifter achieving uniform phase and amplitude response across 27 to 31 GHz,” in Proc. IEEE BiCMOS Comp. Semicond. Integr. Circuits Tech. Symp., pp. 1--4, Nov. 2019.
[9] R. A. Shaheen, R. Akbar, T. Rahkonen,J. Aikio, A. Sethi, and A. Pärssinen, “ A differential reflection-type phase shifter based on CPW coupled-line coupler in 45nm CMOS SOI,” in Proc. 16th Int. Symp. Wireless Commun. Syst., pp. 558--561, Aug. 2019.
[10] J. Xia, M. Farouk, and S. Boumaiza, “Digitally-assisted 27-33 GHz reflection-type phase shifter with enhanced accuracy and low IL-variation,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp. 63--66, Jun. 2019.
[11] B.-W. Min and G. M. Rebeiz, “Single-ended and differential Ka-band BiCMOS phased array front-ends,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2239–2250, Oct. 2008.
[12] W.-J. Tseng, C.-S. Lin, Z.-M. Tsai, and H. Wang, “A miniature switching phase shifter in 0.18-μm CMOS,” in Proc. IEEE Asia Pacific Microw. Conf., pp. 2132−2135, Dec. 2009.
[13] J. G. Yang and K. Yang, “Ka-band 5-Bit MMIC phase shifter using InGaAs PIN switching diodes,”. IEEE Microw. Wireless Compon. Lett., vol. 21, no. 3, pp. 151–153, Mar. 2011.
[14] G. S. Shin et al., “Low insertion loss, compact 4-bit phase shifter in 65 nm CMOS for 5G applications,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 1, pp. 37–39, Jan. 2016.
[15] Q. Zheng et al., “Design and performance of a wideband Ka-band 5-b MMIC phase shifter,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 5, pp. 482–484, May 2017.
[16] D. Kramer, “Ka-band P-I-N Diode based digital phase shifter,” in. Proc. Eur. Microw. Conf., pp. 1285–1288, Sep. 2018.
[17] J.-H. Tsai, F.-M. Lin, and H. Xiao, “Low RMS phase error 28 GHz 5-bit switch type phase shifter for 5G applicationElectron. Lett., vol. 54, no. 20, pp. 1184–1185, Oct. 2018.
[18] B.-W. Min and G. M. Rebeiz, “A 39 GHz 5-bit switch type phase shifter using 65 nm CMOS technology,” in Proc. IEEE 8th Glob. Conf. Consum. Electron., pp. 616–617, Oct. 2019.
[19] M.-J Jung and B.-W. Min, “A compact Ka-band 4-bit phase shifter with low group delay deviation,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 4, pp. 414–416, Apr. 2020.
[20] J.-S. Fu, private communication, Jul.~2020.
[21] X. Tang and K. Mouthaan, “Design of large bandwidth phase shifters using common mode all-pass networks,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 55--57, Feb. 2012.
[22] D. Adler and R. Popovich, “Broadband switched-bit phase shifter using all-pass networks,” IEEE MTT-S Int. Microw. Symp. Dig., pp.~265--268, Jul. 1991.
[23] Qorvo TGP2102. Retrieved from https://www.qorvo.com/products/p/TGP2102
指導教授 傅家相(Jia-Shiang Fu) 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明