參考文獻 |
1. R .Brown, “A novel AlGaN/GaN based enhancement mode high electron mobility transistor with sub-critical barrier thickness,” University of Glasgow, pp.31-32, Jul. 2015.
2. N. Ma , N. Tanen , A. Verma, “Intrinsic Electron Mobility Limits in beta-Ga2O3” Applied Physics Letters, vol. 109, issue 21, Nov. 2016.
3. M. Slomski, N. Blumenschein1, P. P. Paskov, “Anisotropic thermal conductivity of β-Ga2O3 at elevated temperatures: Effect of Sn and Fe dopants,” Journal of Applied Physics, vol. 121, issue 23, Jun. 2017.
4. S. Kumar, A. S. Pratiyush, R. Muralidharan, “A performance comparison between β-Ga2O3 and GaN High Electron Mobility Transistors,” IEEE Transactions on Electron Devices, vol. 66, no. 8, pp.3310-3317, Aug. 2019.
5. S. J. Pearton, F. Ren, M. Tadjer, “Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS.” Journal of Applied Physics, vol. 124, issue 22, Dec. 2018.
6. M. Baldini , Z. Galazka , G. Wagner, “Recent progress in the growth of β-Ga2O3 for power electronics applications.” Materials Science in Semiconductor Processing, vol. 78, pp.132-146, May 2018.
7. K. Sasaki, M. Higashiwaki, “Ga2O3 Schottky Barrier Diodes Fabricated by Using Single_Crystal β- Ga2O3 (010) Substrates,” IEEE Electron Device Letters, vol. 34, no. 4, pp.493-495, Apr. 2013.
8. M. Higashiwaki, K. Konishi, K. Sasaki, “Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/ Ga2O3 (001) Schottky barrier diodes fabricated on n- -Ga2O3 drift layers grown by halide vapor phase epitaxy,” Applied Physics Letters, vol. 108, issue 13, Mar. 2016.
9. S. Oh, G. Yang, and J. Kimz, “Electrical Characteristics of Vertical Ni/β-Ga2O3 Schottky Barrier Diodes at High Temperatures,” Journal of Solid State Science and Technology, vol. 6, no. 2, pp.Q3022-Q3025, Sep. 2016.
10. S. Ahn, F. Ren, L. Yuan, “Temperature-Dependent Characteristics of Ni/Au and Pt/Au Schottky Diodes on β- Ga2O3,” Journal of Solid State Science and Technology, vol. 6, no. 1, pp.68-72, Jan. 2017.
11. J. Yang, S. Ahn, F. Ren, “High reverse breakdown voltage Schottky rectifiers without edge termination on Ga2O3,” Applied Physics Letters, vol 110, issue 19, May 2017.
12. Jiancheng Yang, Shihyun Ahn, F. Ren, “High Breakdown Voltage (−201) β- Ga2O3 Schottky Rectifiers,” IEEE Electron Device Letters, vol. 38, no. 7, pp.906-909, Jul. 2017.
13. Y. Gao, A. Li, Q. Feng, “High-Voltage β-Ga2O3 Schottky Diode with Argon-Implanted Edge Termination,” Nanoscale Research Letters, vol. 14, no. 8, Jan. 2019.
14. M. E. Ingebrigtsen , L. Vines, G. Alfieri, “Bulk β-Ga2O3 with (010) and (201) Surface Orientation: SchottkyContacts and Point Defects,” Materials Science Forum, vol. 897, pp.755-758, May 2017.
15. A.B. Chase, “Growth of β-Ga2O3 by the Verneuil Technique,” Journal of The American Ceramic Society, vol. 47, no. 9, pp. 470, 1964.
16. E. G. Víllora, K. Shimamura, Y. Yoshikawa, “Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping,” Applied Physics Letters, vol. 92, issue 20, May 2008.
17. A. Kuramata, K. Koshi, S. Watanabe, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Japanese Journal of Applied Physics, vol. 55, no.12, Aug. 2016.
18. Z. Galazka, R. Uecker, D. Klimm, “Scaling-Up of Bulk β-Ga2O3 Single Crystals by the Czochralski Method ,” Journal of Solid State Science and Technology, vol. 6, no. 2, pp.Q3007-Q3011, Sep. 2017.
19. E.G. Villora, K. Shimamura, Y. Yoshikawa, “Large-size β-Ga2O3 single crystals and wafers,” Journal of Crystal Growth, vol. 270, pp.420-426, Aug. 2004.
20. Y. Tomm, P. Reiche, D. Klimm, T. Fukuda, “Czochralski grown Ga2O3 crystals,” Journal of Crystal Growth, vol. 220, pp.510-514, Sep. 2000.
21. Z. Galazka, R. Uecker, K. Irmscher, “Czochralski growth and characterization of β-Ga2O3 single crystals,” Crystal Research Technology, vol. 45, no. 12, pp.1229–1236, Jul. 2010.
22. H. Aida, K. Nishiguchi, H. Takeda, “Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method,” Japanese Journal of Applied Physics, vol. 47, no.11, pp.8506-8509, Nov. 2008.
23. A. Kuramata, K. Koshi, S. Watanabe, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Japanese Journal of Applied Physics, vol. 55, no.12, Nov. 2016.
24. T. Harwig, J. Schoonman, “Electrical Properties of β-Ga2O3, Single Crystals. II,” Journal of Solid State Chemistry, vol. 23, pp.205-211, 1978.
25. M. Baldini, Z. Galazka, G. Wagner, “Recent progress in the growth of β-Ga2O3 for power electronics applications,” Materials Science in Semiconductor Processing, vol. 78, pp.132-146, Jul. 2017.
26. T. Onuma, S. Fujioka, T. Yamaguchi, “Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals,” Applied Physics Letters, vol. 103, issue 4, Jul. 2013.
27. N. Suzuki, S. Ohira, M. Tanaka, T. Sugawara, “Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal,” Physica Status Solidi, vol. 4, no. 7, May 2007.
28. T. Oishi, Y. Koga, K. Harada, “High-mobility β-Ga2O3(-201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact,” Applied Physics Express, vol. 8, no. 3, Feb. 2015.
29. W. Li , X. Zhang , R. Meng, “Epitaxy of III-Nitrides on β-Ga2O3 and Its Vertical Structure LEDs,” Micromachines, vol. 10, issue 5, May 2019.
30. Y. Yang, J. Zhang, S. Hu, “First-principles study of Ga-vacancy induced magnetism in β-Ga2O3,” Physical Chemistry Chemical Physics, vol. 19, pp.28928-28935, Oct. 2017. |