博碩士論文 107521134 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:107.21.85.250
姓名 朱竑憲(Hung-Hsien Chu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
(Device Characteristics of Ga2O3 Vertial Schottky Barrier Diodes)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 氮化鋁鎵/氮化鎵高電子遷移率電晶體之佈局分析及功率放大器研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要針對在氧化鎵(-201)基板上製作不同場板長度之垂直型氧化鎵蕭特基二極體。對於蕭特基二極體元件,降低操作過程中的損耗、降低啟動電壓與低的漏電流值是非常重要的指標,而本論文將針對垂直型氧化鎵蕭特基二極體之場板大小的變化對於其元件特性進行研究。
首先,分析無場板元件(Device A)、超過陽極大小之場板長度為 5 μm (Device B)、和場板蓋過隔離平台之元件(Device C)之蕭特基二極體基本電性。接著探討其製程後的特性表現,利用室溫下順向、逆向的電壓-電流的量測曲線,分析不同場板長度與臨界電場之關聯性。當場板長度蓋過隔離平台之元件,其啟動電壓(VON )為 0.75 V,與無場板設計之元件相同,且藉由場板金屬覆蓋住隔離平台之設計,其漏電流甚至比無場板設計之元件更小,導通電阻也下降至3.6 mΩ·cm2。也利用變溫來探討垂直型氧化鎵蕭特基二極體順向偏壓及逆向偏壓下的特性,在順向偏壓下可計算出其蕭特基能障約為0.8 eV,估算蒸鍍金屬後的蕭特基接觸有不均勻的接面。而逆向電流-電壓曲線可以進一步分析漏電流機制,因低溫下缺陷中之載子不易受溫度影響而移動,而在高溫下載子就易因溫度的影響而從缺陷中逃脫。量測得知,漏電流會隨著溫度而變化,當量測溫度上升時,漏電流上升幅度相較於先前溫度劇烈,推測可能是由於蝕刻後表面不平整及缺陷,在高溫時載子能掙脫束縛而造成較大的漏電流。
摘要(英) β-Ga2O3 has attracted considerable interest as a promising wide-bandgap semiconductor material for high power devices. Aside from the availability of meltgrown substrates, the sizable bandgap value of 4.5–4.9 eV allows for a large critical electric field exceeding 5 MV cm−1 as experimentally observed. The major limitation at the moment is the lack of high quality patterning, doping and contacting processes that exist for the more mature semiconductors. In particular, Schottky rectifiers are attractive because of their fast switching speed, which is important for improving the efficiency of inductive motor controllers and power supplies and also their low turn-on voltages compared to p-n junction rectifiers.
In this study, Ga2O3 vertical Schottky barrier diodes with four different mesa diameters and two types of field plate structure are proposed. Devices are investigated in the DC output characteristics, breakdown voltage and compared with each other to figure out the influence of field plate size and mesa diameter.
Devices with field plate exceed anode area 5 µm and exceed mesa 5 µm are compared. By enlarging the mesa diameter, the mesa sidewall effects from dry etching can be reduced. The leakage current (IR) of device with field plate (FP) can be effectively reduce by 80% compared with the one without FP. With the field plate metal area increase, the device breakdown voltage VB can increase by as much as 150%.
關鍵字(中) ★ 氧化鎵
★ 蕭特基二極體
★ 垂直
★ 場電板
★ 減小漏電流
★ 蝕刻平台直徑
關鍵字(英) ★ Ga2O3
★ Schottky Barrier Diodes
★ Vertical
★ Field plate
★ leakage current reduced
★ Mesa diameter
論文目次 Abstract VII
致謝 VIII
圖目錄 XI
表目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 寬能隙蕭特基二極體市場發展與應用 3
1.3 氧化鎵蕭特基二極體國內外相關研究成果 4
1.4 研究動機與目的 11
1.5 論文架構 12
第二章 氧化鎵材料特性介紹與垂直型氧化鎵蕭特基二極體於氧化鎵基板上之結構設計 13
2.1 前言 13
2.2 氧化鎵基板之磊晶結構與材料分析 13
2.2.1 氧化鎵基板之磊晶發展介紹 15
2.2.2 氧化鎵晶態與晶向介紹 22
2.3 垂直型氧化鎵蕭特基二極體之元件結構與佈局 24
2.4 垂直型氧化鎵蕭特基二極體於氧化鎵基板之元件製作 26
2.5 結論 28
第三章 垂直型氧化鎵蕭特基二極體於氧化鎵基板元件之元件量測與電性分析 29
3.1 前言 29
3.2 氧化鎵蕭特基二極體之電容-電壓特性分析 29
3.3 氧化鎵蕭特基二極體順向導通特性 31
3.4 氧化鎵蕭特基二極體逆向崩潰特性分析 46
3.5 氧化鎵蕭特基二極體變溫之電性量測與分析 50
3.5.1 氧化鎵蕭特基二極體變溫萃取蕭特基能障 50
3.5.2 氧化鎵蕭特基二極體逆向漏電流分析 60
3.6 結論 61
第四章 未來展望 62
參考文獻 63
附錄 Ⅰ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之元件製程流程 67
參考文獻 1. R .Brown, “A novel AlGaN/GaN based enhancement mode high electron mobility transistor with sub-critical barrier thickness,” University of Glasgow, pp.31-32, Jul. 2015.
2. N. Ma , N. Tanen , A. Verma, “Intrinsic Electron Mobility Limits in beta-Ga2O3” Applied Physics Letters, vol. 109, issue 21, Nov. 2016.
3. M. Slomski, N. Blumenschein1, P. P. Paskov, “Anisotropic thermal conductivity of β-Ga2O3 at elevated temperatures: Effect of Sn and Fe dopants,” Journal of Applied Physics, vol. 121, issue 23, Jun. 2017.
4. S. Kumar, A. S. Pratiyush, R. Muralidharan, “A performance comparison between β-Ga2O3 and GaN High Electron Mobility Transistors,” IEEE Transactions on Electron Devices, vol. 66, no. 8, pp.3310-3317, Aug. 2019.
5. S. J. Pearton, F. Ren, M. Tadjer, “Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS.” Journal of Applied Physics, vol. 124, issue 22, Dec. 2018.
6. M. Baldini , Z. Galazka , G. Wagner, “Recent progress in the growth of β-Ga2O3 for power electronics applications.” Materials Science in Semiconductor Processing, vol. 78, pp.132-146, May 2018.
7. K. Sasaki, M. Higashiwaki, “Ga2O3 Schottky Barrier Diodes Fabricated by Using Single_Crystal β- Ga2O3 (010) Substrates,” IEEE Electron Device Letters, vol. 34, no. 4, pp.493-495, Apr. 2013.
8. M. Higashiwaki, K. Konishi, K. Sasaki, “Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/ Ga2O3 (001) Schottky barrier diodes fabricated on n- -Ga2O3 drift layers grown by halide vapor phase epitaxy,” Applied Physics Letters, vol. 108, issue 13, Mar. 2016.
9. S. Oh, G. Yang, and J. Kimz, “Electrical Characteristics of Vertical Ni/β-Ga2O3 Schottky Barrier Diodes at High Temperatures,” Journal of Solid State Science and Technology, vol. 6, no. 2, pp.Q3022-Q3025, Sep. 2016.
10. S. Ahn, F. Ren, L. Yuan, “Temperature-Dependent Characteristics of Ni/Au and Pt/Au Schottky Diodes on β- Ga2O3,” Journal of Solid State Science and Technology, vol. 6, no. 1, pp.68-72, Jan. 2017.
11. J. Yang, S. Ahn, F. Ren, “High reverse breakdown voltage Schottky rectifiers without edge termination on Ga2O3,” Applied Physics Letters, vol 110, issue 19, May 2017.
12. Jiancheng Yang, Shihyun Ahn, F. Ren, “High Breakdown Voltage (−201) β- Ga2O3 Schottky Rectifiers,” IEEE Electron Device Letters, vol. 38, no. 7, pp.906-909, Jul. 2017.
13. Y. Gao, A. Li, Q. Feng, “High-Voltage β-Ga2O3 Schottky Diode with Argon-Implanted Edge Termination,” Nanoscale Research Letters, vol. 14, no. 8, Jan. 2019.
14. M. E. Ingebrigtsen , L. Vines, G. Alfieri, “Bulk β-Ga2O3 with (010) and (201) Surface Orientation: SchottkyContacts and Point Defects,” Materials Science Forum, vol. 897, pp.755-758, May 2017.
15. A.B. Chase, “Growth of β-Ga2O3 by the Verneuil Technique,” Journal of The American Ceramic Society, vol. 47, no. 9, pp. 470, 1964.
16. E. G. Víllora, K. Shimamura, Y. Yoshikawa, “Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping,” Applied Physics Letters, vol. 92, issue 20, May 2008.
17. A. Kuramata, K. Koshi, S. Watanabe, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Japanese Journal of Applied Physics, vol. 55, no.12, Aug. 2016.
18. Z. Galazka, R. Uecker, D. Klimm, “Scaling-Up of Bulk β-Ga2O3 Single Crystals by the Czochralski Method ,” Journal of Solid State Science and Technology, vol. 6, no. 2, pp.Q3007-Q3011, Sep. 2017.
19. E.G. Villora, K. Shimamura, Y. Yoshikawa, “Large-size β-Ga2O3 single crystals and wafers,” Journal of Crystal Growth, vol. 270, pp.420-426, Aug. 2004.
20. Y. Tomm, P. Reiche, D. Klimm, T. Fukuda, “Czochralski grown Ga2O3 crystals,” Journal of Crystal Growth, vol. 220, pp.510-514, Sep. 2000.
21. Z. Galazka, R. Uecker, K. Irmscher, “Czochralski growth and characterization of β-Ga2O3 single crystals,” Crystal Research Technology, vol. 45, no. 12, pp.1229–1236, Jul. 2010.
22. H. Aida, K. Nishiguchi, H. Takeda, “Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method,” Japanese Journal of Applied Physics, vol. 47, no.11, pp.8506-8509, Nov. 2008.
23. A. Kuramata, K. Koshi, S. Watanabe, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Japanese Journal of Applied Physics, vol. 55, no.12, Nov. 2016.
24. T. Harwig, J. Schoonman, “Electrical Properties of β-Ga2O3, Single Crystals. II,” Journal of Solid State Chemistry, vol. 23, pp.205-211, 1978.
25. M. Baldini, Z. Galazka, G. Wagner, “Recent progress in the growth of β-Ga2O3 for power electronics applications,” Materials Science in Semiconductor Processing, vol. 78, pp.132-146, Jul. 2017.
26. T. Onuma, S. Fujioka, T. Yamaguchi, “Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals,” Applied Physics Letters, vol. 103, issue 4, Jul. 2013.
27. N. Suzuki, S. Ohira, M. Tanaka, T. Sugawara, “Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal,” Physica Status Solidi, vol. 4, no. 7, May 2007.
28. T. Oishi, Y. Koga, K. Harada, “High-mobility β-Ga2O3(-201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact,” Applied Physics Express, vol. 8, no. 3, Feb. 2015.
29. W. Li , X. Zhang , R. Meng, “Epitaxy of III-Nitrides on β-Ga2O3 and Its Vertical Structure LEDs,” Micromachines, vol. 10, issue 5, May 2019.
30. Y. Yang, J. Zhang, S. Hu, “First-principles study of Ga-vacancy induced magnetism in β-Ga2O3,” Physical Chemistry Chemical Physics, vol. 19, pp.28928-28935, Oct. 2017.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明