博碩士論文 107522022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.141.41.187
姓名 施秉昌(Bing­-Chang Shih)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 為多流量低軌道衛星系統提出的動態換手策略
(A Dynamic Handover Scheme for Multi­-Class­-Traffic LEO Satellite Networks)
相關論文
★ 基於OP-TEE的可信應用程式軟體生態系統★ 在低軌道衛星無線通訊中的CSI預測方法
★ 基於Trustzone的智慧型設備語音隱私保護系統★ 一種減輕LEO衛星網路干擾的方案
★ TruzGPS:基於TrustZone的位置隱私權保護系統★ 衛星地面整合網路之隨機接入前導訊號設計與偵測
★ SatPolicy: 基於Trustzone的衛星政策執行系統★ TruzMalloc: 基於TrustZone 的隱私資料保 護系統
★ 衛星地面網路中基於物理層安全的CSI保護方法★ 低軌道衛星地面整合網路之安全非正交多重存取傳輸
★ 低軌道衛星地面網路中的DRX機制設計★ 衛星地面整合網路之基於集合系統的前導訊號設計
★ 基於省電的低軌衛星網路路由演算法★ 衛星上可重組化計算之安全FPGA動態部分可重組架構
★ 衛星網路之基於空間多樣性的前導訊號設計★ TrustCS: 基於 Trusted Firmware-M 的安全 CubeSat 韌體更新機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 第三代合作夥伴計劃(3GPP)建議5G地面網路可與低軌道(Low Earth Orbit, LEO)衛星網路互相合作,以達到真正的全球覆蓋。然而,低軌道衛星相對於地面高速移動,使得使用者裝置(User Equipment, UE)必須頻繁變更所連接的cell以確保網路服務的連續性。在連線狀態(connected state)的使用者裝置改變所連接cell的程序就稱為換手(Handover,HO)。在低軌道衛星網路中,分配有限的頻道資源以滿足不同類型的使用者的需求並減少大量裝置進行換手所帶來的訊號負擔是一個重大挑戰。在本文中,我們提出了一種動態的換手策略。根據cell的負載情況為5G的兩個場景,增強型行動寬頻(enhanced mobile broadband, eMBB)以及大規模低功耗聯網(Massive Machine Type Communications, mMTC)的使用者裝置動態的調整進行換手的時機。我們使用馬爾可夫過程建立頻道資源分配模型以分析所提出的動態換手策略的效能。分析結果證明我們的策略能有效減少換手並平衡cell的負載。
摘要(英) The 3rd Generation Partnership Project (3GPP) recommended that 5G terrestrial networks can cooperate with Low Earth Orbit (LEO) satellite networks to achieve global coverage. However, low-orbit satellites move at high speed relative to the surface of earth, user devices have to frequently change the cell which it connected. When User Equipment (UE) moves within the coverage area of the satellite network, it can connect to the other cells to ensure the continuity of services. If UE is in a connected state, the Handover (HO) procedure can change connected cell of the UE. In the LEO satellite networks, it is a challenge to allocate limited channel resources to meet the needs of different types of users and reduce the handover signalling overhead caused by large number of devices. In this paper, we proposed a dynamic handover scheme. According to the load of the cell, we dynamically adjust the handover timing for the UEs in the two scenarios: enhanced mobile broadband (eMBB) and Massive Machine Type Communications (mMTC). The Markov process is used to establish the channel resource allocation model, and the proposed scheme has been analyzed. The simulation have shown that we reduce the number of handover procedures and balancing the cell loading.
關鍵字(中) ★ 低軌道衛星
★ 換手
關鍵字(英) ★ LEO
★ Handover
論文目次 中文摘要 i
Abstract ii
致謝 iii
Contents iv
List of Figures vi
List of Tables ix
1 Introduction 1
2 Related Work 4
3 System Model 8
4 Methodology 11
4.1 Unnecessary HO Call Reduction . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Cell Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 The Proposed HO Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Resource Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 Analysis 18
5.1 The Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 The Markov Process Analysis in Hybrid Scenario . . . . . . . . . . . . . 24
5.3 The Markov Process Analysis in mMTC Scenario . . . . . . . . . . . . . 31
6 Simulation 33
6.1 The Simulation Result in Hybrid Scenario . . . . . . . . . . . . . . . . . 33
6.2 The Simulation Result in mMTC Scenario . . . . . . . . . . . . . . . . . 47
7 Conclusion 53
Bibliography 54
參考文獻 [1] Solutions for NR to support non­-terrestrial networks (NTN), 3GPP, Dec. 2019, TR 38.821 V1.0.0.
[2] Y. Wu, G. Hu, F. Jin, and J. Zu, “A satellite handover strategy based on the potential game in leo satellite networks,” IEEE Access, vol. 7, 2019.
[3] G. Maral, J. Restrepo, E. del Re, R. Fantacci, and G.Giambene, “Performance analysis for a guaranteed handover service in an leo constellation with a ”satellite­-fixed cell” system,” IEEE Transactions on Vehicular Technology, vol. 47, no. 4, pp. 1200–1214, 1998.
[4] Z. Wang, P. T. Mathiopoulos, and R. Schober “Performance analysis and improvement methods for channel resource management strategies of leo–mss with multiparty traffic,” IEEE Transactions on Vehicular Technology, vol. 57, no. 6, pp. 3832–3842, 2008.
[5] ——, “Channeling partitioning policies for multi-­class traffic in leo-­mss,” IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 4, pp. 1320–1334, 2009.
[6] K. Li, Y. Li, Z. Qiu, Q. Wang, J. Lu, and W. Zhou, “Handover procedure design and performance optimization strategy in leo­-hap system,” in 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), 2019.
[7] M. Gkizeli, R. Tafazolli, and B. Evans, “Modeling handover in mobile satellite diversity based systems,” in IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211), vol. 1, 2001.
[8] S. U. Bukhari, L. Yu, X. q. Di, C. Chen, and X. Liu, “Fuzzy c­-mean clustering based: Leo satellite handover,” in Data Science, Q. Zhou, Y. Gan, W. Jing, X. Song, Y. Wang, and Z. Lu, Eds. Singapore: Springer Singapore, 2018.
[9] B. Yang, Y. Wu, X. Chu, and G. Song, “Seamless handover in software-­defined satellite networking,” IEEE Communications Letters, vol. 20, no. 9, 2016.
[10] C. Duan, J. Feng, H. Chang, B. Song, and Z. Xu, “A novel handover control strategy combined with multi-­hop routing in leo satellite networks,” in 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2018.
[11] L. Feng, Y. Liu, L. Wu, Z. Zhang, and J. Dang, “A satellite handover strategy based on mimo technology in leo satellite networks,” IEEE Communications Letters, vol. 24, no. 7, 2020.
[12] C. Dai, Y. Liu, S. Fu, J. Wu, and Q. Chen, “Dynamic handover in satellite-­terrestrial integrated networks,” in 2019 IEEE Globecom Workshops (GC Wkshps), 2019.
[13] H. Xu, D. Li, M. Liu, G. Han, W. Huang, and C. Xu, “Qoe-­driven intelligent handover for user­-centric mobile satellite networks,” IEEE Transactions on Vehicular Technology, pp. 1–1, 2020.
[14] E. Del Re, R. Fantacci, and G. Giambene, “Different queuing policies for handover requests in low earth orbit mobile satellite systems,” IEEE Transactions on Vehicular Technology, vol. 48, no. 2, pp. 448–458, 1999.
[15] B. Martinez, F. Adelantado, A. Bartoli, and X. Vilajosana, “Exploring the performance boundaries of nb­-iot,” IEEE Internet of Things Journal, vol. 6, no. 3, pp.5702–5712, 2019.
[16] S. Ryoo, J. Jung, and R. Ahn, “Energy efficiency enhancement with rrc connection control for 5g new rat,” in 2018 IEEE Wireless Communications and Networking Conference (WCNC), 2018.
[17] E. Del Re, R. Fantacci, and G. Giambene, “Efficient dynamic channel allocation techniques with handover queuing for mobile satellite networks,” IEEE Journal on Selected Areas in Communications, vol. 13, no. 2, pp. 397–405, 1995.
指導教授 張貴雲(Guey­-Yun Chang) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明