博碩士論文 107522032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.220.231.235
姓名 洪家楷(Chia-Kai Hung)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 在低軌道衛星無線通訊中的CSI預測方法
(A CSI Prediction Scheme for LEO Satellite Wireless Communications)
相關論文
★ 基於OP-TEE的可信應用程式軟體生態系統★ 為多流量低軌道衛星系統提出的動態換手策略
★ 基於Trustzone的智慧型設備語音隱私保護系統★ 一種減輕LEO衛星網路干擾的方案
★ TruzGPS:基於TrustZone的位置隱私權保護系統★ 在無線感測網路中連續型物體的偵測與追蹤協定之設計
★ 在車用無線網路中利用虛擬地標的封包繞徑協定★ 在無線感測網路下處理不同重要性區域的覆蓋問題
★ 在車用網路環境下分散式計程車呼叫協定★ 車用無線網路車輛密度偵測方法
★ 在車用無線網路中利用適應道路分割法提供區域性階層式定位服務★ 在無線感測網路中以延長網路生命週期為目的之避洞繞徑協定
★ 利用車用無線網路尋找空停車位之協定★ 在車載無線網路中以區域性為基礎的資源分享協定
★ 設計於城市環境之分散式車載隨意行動網路位置服務★ 在無線感測網路下以方向性天線為基礎的定位方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在目前的5G網路中,為了得到更高的資料吞吐量,常使用高頻段的頻譜來進行通訊,由於高頻段的訊號比低頻段的訊號有著更高的衰退率,進而導致5G有著低覆蓋率的問題。在高山、海洋和沙漠等無法建置基地台之區域就無法享受5G帶來的便利。在後5G的設計理念中,為了解決低覆蓋率問題,結合低軌道衛星與地面網路形成互補,實現全球覆蓋網路。然而,低軌道衛星有著高度移動性以及遠距離傳輸的特性,使得都卜勒效應(Doppler effect)和路徑損失(Path Loss) 嚴重加劇,容易造成通訊通道處於不穩定的狀態,使用者因而無法解析出正確的訊號。在5G中,為了解決通道衰弱的問題,提出許多自適應技術(Adaptive Transmission Technique)。自適應技術運作在傳送端,且必須藉由接收端執行通道估計(Channel Estimation)並回傳的通道狀態資訊 (Channel State Information (CSI)) 進行參數調整。然而,在衛星5G網路中,因長距離衛星鏈路所造成的傳輸延遲使得接收端收到過時的CSI而做出錯誤的自適應決策。所以預測CSI的演算法越來越受到重視。然而,大部分的預測演算法需要收集大量的環境參數才能進行預測。在快速變化的衛星通道中使用者需要頻繁地收集新的環境參數,造成使用者高計算負擔。因此,在本篇論文中,我們提出一個適用於低軌道衛星網路的輕量CSI預測方法。我們使用少量歷史CSI與循環神經網路 (Recurrent Neural Network) 來預測未來CSI,以降低使用傳統通道估計的頻率。
摘要(英) In the current 5G network, to obtain higher throughput, a high-band spectrum is often used for 5G communication. Since the signal in high-band has a higher declining rate than the signal in the low-band, 5G encounter low coverage problem. Users in areas such as mountains, oceans, and deserts where base stations cannot be built are not able to enjoy the convenience brought by 5G. In the specification of beyond 5G, to cope with the problem of low coverage, combining low orbit satellites (LEO) with the terrestrial network to achieve global coverage network. However, LEOs have high mobility and ability to long-range transmission characteristic, which makes the Doppler effect and path loss severely aggravated, which easily makes the communication channel to be in an unstable state, therefore, users cannot detect the accurate signal. In 5G, to solve the problem of the above mentioned, several Adaptive Transmission Technique are proposed. Adaptive transmission techniques usually operate on the transmitter side, and the adjustment of which is tuning by the Channel State Information (CSI), which is obtained through channel estimation and feedbacked from the receiver side. However, in the 5G satellite network, the obtained CSI might be already outdated before its actual usage due to the long-range satellite link. Therefore, the CSI prediction algorithm has gained more research interests. Most of the prediction methods need to collect a great number of environmental parameters to complete the predict process. In a time-variant satellite channel, the obtained estimates expire quickly with the change of propagation environments, which will cause high computational cost. In this paper, we propose a lightweight CSI prediction method for LEO communication. We use a small amount of historical CSI to train the Recurrent Neural Network (RNN) and predict the future CSI to reduce the use of traditional channel estimation.
關鍵字(中) ★ 衛星-地面5G 網路
★ 通道狀態資訊
★ 循環神經網路
關鍵字(英) ★ Satellite-terrestrial 5G network
★ Channel State information
★ Recurrent Neural Network
論文目次 中文摘要 i
Abstract ii
致謝 iii
Contents iv
List of Figures vi
List of Tables ix
1 Introduction 1
2 Related Work 4
2.1 Parametric radio channel prediction . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Mathematical Method . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Deep Learning Method . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Historical CSI Channel Prediction . . . . . . . . . . . . . . . . . . . . . 5
3 Preliminary 7
3.1 Channel Coefficient Estimation . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.1 Free Space Path Loss . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Shadow Fading . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.3 Small-Scale Fading . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Methodology 15
4.1 LEO Satellite Channel Model . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 The Proposed Learning Framework . . . . . . . . . . . . . . . . . . . . 17
4.2.1 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Model Training and Testing . . . . . . . . . . . . . . . . . . . . 18
4.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.1 Impact of LEO Height . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Impact of LEO Track . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.3 Impact of Different Subcarrier . . . . . . . . . . . . . . . . . . . 22
4.3.4 Impact of Weather . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.5 Training Model Classification Scheme . . . . . . . . . . . . . . . 26
5 Performance Analysis 30
5.1 Data Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6 Simulation 32
6.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Performance of different scenario . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Feasibility of offline ECOCSI prediction model . . . . . . . . . . . . . . 39
6.3.1 Performance on Different altitude of LEO . . . . . . . . . . . . . 39
6.3.2 Performance on Different sign of CSI and weather . . . . . . . . 41
7 Conclusion 44
Bibliography 44
A Without Weather Classification 49
B Phase Shift 51
參考文獻 [1] A. J. Goldsmith and S. . Chua, “Adaptive coded modulation for fading channels,” IEEE Transactions on Communications, vol. 46, no. 5, pp. 595–602, 1998.
[2] B. Vucetic, “An adaptive coding scheme for time-varying channels,” IEEE Transactions on Communications, vol. 39, no. 5, pp. 653–663, 1991.
[3] J. G. Lee, S. Sen, and R. ETKIN, “Transmit antenna selection,” patenteu. [Online]. Available: https://patents.google.com/patent/US9768924/en
[4] NR; Study on New Radio (NR) to support non-terrestrial networks, 3GPP, Jun. 2018, TS 38.811 V15.1.0.
[5] J. B. Andersen, J. Jensen, S. H. Jensen, and F. Frederiksen, “Prediction of future fading based on past measurements,” in Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No.99CH36324), vol. 1, 1999.
[6] R. O. Adeogun, P. D. Teal, and P. A. Dmochowski, “Extrapolation of mimo mobile-to-mobile wireless channels using parametric-model-based prediction,” IEEE Transactions on Vehicular Technology, vol. 64, no. 10, pp. 4487–4498, 2015.
[7] L. Liu, H. Feng, T. Yang, and B. Hu, “Mimo-ofdm wireless channel prediction by exploiting spatial-temporal correlation,” IEEE Transactions on Wireless Communications, vol. 13, no. 1, pp. 310–319, 2014.
[8] H. Hallen, A. Duel-Hallen, Shengquan Hu, Tung-Shen Yang, and Ming Lei, “A physical model for wireless channels to provide insights for long range prediction,” in MILCOM 2002. Proceedings, vol. 1, 2002.
[9] A. Duel-Hallen, “Fading channel prediction for mobile radio adaptive transmission systems,” Proceedings of the IEEE, vol. 95, no. 12, pp. 2299–2313, 2007.
[10] A. Heidari, A. K. Khandani, and D. Mcavoy, “Adaptive modelling and longrange prediction of mobile fading channels,” IET Communications, vol. 4, no. 1, pp. 39–50, 2010.
[11] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur, “Recurrent neural network based language model,” vol. 2, Jan. 2010.
[12] W. Jiang and H. D. Schotten, “A comparison of wireless channel predictors: Artificial intelligence versus kalman filter,” in ICC 2019 2019-IEEE International Conference on Communications (ICC), 2019.
[13] C. Luo, J. Ji, Q. Wang, X. Chen, and P. Li, “Channel state information prediction for 5g wireless communications: A deep learning approach,” IEEE Transactions on Network Science and Engineering, vol. 7, no. 1, pp. 227–236, 2020.
[14] Y. Zhu, X. Dong, and T. Lu, “An adaptive and parameter-free recurrent neural structure for wireless channel prediction,” IEEE Transactions on Communications, vol. 67, no. 11, pp. 8086–8096, 2019.
[15] System Tool Kit 11, Analytical Graphics, Inc., 2019, [Online; accessed 27-July-2020]. [Online]. Available: https://www.agi.com/products/stk
[16] K. E. Baddour and N. C. Beaulieu, “Autoregressive modeling for fading channel simulation,” IEEE Transactions on Wireless Communications, vol. 4, no. 4, pp. 1650–1662, 2005.
[17] T. Ding and A. Hirose, “Fading channel prediction based on combination of complex-valued neural networks and chirp z-transform,” IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 9, pp. 1686–1695, 2014.
[18] M. F. Pop and N. C. Beaulieu, “Limitations of sum-of-sinusoids fading channel simulators,” IEEE Transactions on Communications, vol. 49, no. 4, pp. 699–708, 2001.
[19] Y. Zhao, H. Gao, N. C. Beaulieu, Z. Chen, and H. Ji, “Echo state network for fast channel prediction in ricean fading scenarios,” IEEE Communications Letters, vol. 21, pp. 672–675, 2017.
[20] L. Bai, C. Wang, G. Goussetis, S. Wu, Q. Zhu, W. Zhou, and E. M. Aggoune, “Channel modeling for satellite communication channels at q-band in high latitude,” IEEE Access, vol. 7, pp. 137 691–137 703, 2019.
[21] R. Dey and F. M. Salem, “Gate-variants of gated recurrent unit (gru) neural networks,” in 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), 2017.
[22] J. Kang, W. Zhang, and J. Liu, “Gated recurrent units based hybrid acoustic models for robust speech recognition,” in 2016 10th International Symposium on Chinese Spoken Language Processing (ISCSLP), 2016.
[23] NR; Study on New Radio Access Technology Physical Layer Aspects, 3GPP, Sep. 2017, TS 38.802 V14.2.0.
[24] S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estimation techniques based on pilot arrangement in ofdm systems,” IEEE Transactions on Broadcasting, vol. 48, no. 3, pp. 223–229, 2002.
[25] L. Liu, C. Oestges, J. Poutanen, K. Haneda, P. Vainikainen, F. Quitin, F. Tufvesson, and P. D. Doncker, “The cost 2100 mimo channel model,” IEEE Wireless Communications, vol. 19, no. 6, pp. 92–99, 2012.
[26] P. Kyösti, J. Meinilä, L. Hentila, X. Zhao, T. Jämsä, C. Schneider, M. Narandzic, M. Milojević, A. Hong, J. Ylitalo, V.M. Holappa, M. Alatossava, R. Bultitude, Y. Jong, and T. Rautiainen, “Winner ii channel models,” IST-4-027756 WINNER II D1.1.2 V1.2, Feb. 2008.
[27] Spatial channel model for MIMO simulations, 3GPP, Jun. 2018, TR 25.996 V15.0.0.
[28] Pei-Yun Tsai and Tzi-Dar Chiueh, “Frequency-domain interpolation-based channel estimation in pilot-aided ofdm systems,” in 2004 IEEE 59th Vehicular Technology Conference. VTC 2004Spring (IEEE Cat. No.04CH37514), vol. 1, 2004.
[29] Wikipedia contributors, “Rayleigh fading — Wikipedia, the free encyclopedia,” https://en.wikipedia.org/w/index.php?title=Rayleigh_fading&oldid=935568613, 2020, [Online; accessed 18-August-2020].
[30] Attenuation due to clouds and fog, Int. Telecommun., Aug. 2018, iTU-R 840-7.
[31] Propagation data and prediction methods required for the design of earth-space telecommunication systems,, Int. Telecommun., Jul. 2015, iTU-R 618-12.
[32] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” International Conference on Learning Representations, Dec. 2014.
[33] A. Putra, B. A. Sumbodo, and A. Nurbaqin, “Satellite tracking control system for ugm ground station based on tle calculation,” Jan. 2016, pp. 91–96.
[34] NR; Requirements for support of radio resource management, 3GPP, Jul. 2018, TS 38.133 V15.2.0.
指導教授 張貴雲(Guey-Yun Chang) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明