參考文獻 |
[1] M. F. Dacrema, P. Cremonesi, and D. Jannach, “Are we really making much
progress? A worrying analysis of recent neural recommendation approaches,” CoRR,
vol. abs/1907.06902, 2019. arXiv: 1907.06902. [Online]. Available: http://arxiv.
org/abs/1907.06902.
[2] A. M. Elkahky, Y. Song, and X. He, “A multi-view deep learning approach for
cross domain user modeling in recommendation systems,” in Proceedings of the 24th
International Conference on World Wide Web, ser. WWW ’15, Florence, Italy:
International World Wide Web Conferences Steering Committee, 2015, pp. 278–
288, isbn: 9781450334693. doi: 10.1145/2736277.2741667. [Online]. Available:
https://doi.org/10.1145/2736277.2741667.
[3] D. Kim, C. Park, J. Oh, S. Lee, and H. Yu, “Convolutional matrix factorization for
document context-aware recommendation,” in Proceedings of the 10th ACM Conference
on Recommender Systems, ser. RecSys ’16, Boston, Massachusetts, USA:
Association for Computing Machinery, 2016, pp. 233–240, isbn: 9781450340359.
doi: 10.1145/2959100.2959165. [Online]. Available: https://doi.org/10.1145/
2959100.2959165.
[4] J. Manotumruksa, C. Macdonald, and I. Ounis, “A contextual attention recurrent
architecture for context-aware venue recommendation,” in The 41st International
ACM SIGIR Conference on Research Development in Information Retrieval,
ser. SIGIR ’18, Ann Arbor, MI, USA: Association for Computing Machinery, 2018,
pp. 555–564, isbn: 9781450356572. doi: 10 . 1145 / 3209978 . 3210042. [Online].
Available: https://doi.org/10.1145/3209978.3210042.
[5] N. Sachdeva, K. Gupta, and V. Pudi, “Attentive neural architecture incorporating
song features for music recommendation,” CoRR, vol. abs/1811.08203, 2018. arXiv:
1811.08203. [Online]. Available: http://arxiv.org/abs/1811.08203.
[6] Z. Sun, J. Yang, J. Zhang, A. Bozzon, L.-K. Huang, and C. Xu, “Recurrent knowledge
graph embedding for effective recommendation,” in Proceedings of the 12th
ACM Conference on Recommender Systems, ser. RecSys ’18, Vancouver, British
Columbia, Canada: Association for Computing Machinery, 2018, pp. 297–305, isbn:
9781450359016. doi: 10.1145/3240323.3240361. [Online]. Available: https://
doi.org/10.1145/3240323.3240361.
37
[7] Y. Tay, A. T. Luu, and S. C. Hui, “Translational recommender networks,” CoRR,
vol. abs/1707.05176, 2017. arXiv: 1707.05176. [Online]. Available: http://arxiv.
org/abs/1707.05176.
[8] Y. Tay, L. A. Tuan, and S. C. Hui, “Multi-pointer co-attention networks for recommendation,”
CoRR, vol. abs/1801.09251, 2018. arXiv: 1801 . 09251. [Online].
Available: http://arxiv.org/abs/1801.09251.
[9] T. X. Tuan and T. M. Phuong, “3d convolutional networks for session-based recommendation
with content features,” in Proceedings of the Eleventh ACM Conference
on Recommender Systems, ser. RecSys ’17, Como, Italy: Association for Computing
Machinery, 2017, pp. 138–146, isbn: 9781450346528. doi: 10.1145/3109859.
3109900. [Online]. Available: https://doi.org/10.1145/3109859.3109900.
[10] F. Vasile, E. Smirnova, and A. Conneau, “Meta-prod2vec - product embeddings using
side-information for recommendation,” CoRR, vol. abs/1607.07326, 2016. arXiv:
1607.07326. [Online]. Available: http://arxiv.org/abs/1607.07326.
[11] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube recommendations,”
in Proceedings of the 10th ACM Conference on Recommender
Systems, New York, NY, USA, 2016.
[12] S. Kabbur and G. Karypis, “Nlmf: Nonlinear matrix factorization methods for top-n
recommender systems,” vol. 2015, Dec. 2014. doi: 10.1109/ICDMW.2014.108.
[13] M. Deshpande and G. Karypis, “Item-based top-n recommendation algorithms,”
ACM Trans. Inf. Syst., vol. 22, no. 1, pp. 143–177, Jan. 2004, issn: 1046-8188.
doi: 10.1145/963770.963776. [Online]. Available: https://doi.org/10.1145/
963770.963776.
[14] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative filtering
recommendation algorithms,” in Proceedings of the 10th International Conference
on World Wide Web, ser. WWW ’01, Hong Kong, Hong Kong: Association for Computing
Machinery, 2001, pp. 285–295, isbn: 1581133480. doi: 10.1145/371920.
372071. [Online]. Available: https://doi.org/10.1145/371920.372071.
[15] A. Tewari, J. Singh, and A. Barman, “Generating top-n items recommendation set
using collaborative, content based filtering and rating variance,” Procedia Computer
Science, vol. 132, pp. 1678–1684, Jan. 2018. doi: 10.1016/j.procs.2018.05.139.
[16] C. Cooper, S. Lee, T. Radzik, and Y. Siantos, “Random walks in recommender
systems: Exact computation and simulations,” Apr. 2014, pp. 811–816. doi: 10.
1145/2567948.2579244.
[17] P. Lops, M. de Gemmis, and G. Semeraro, “Content-based recommender systems:
State of the art and trends,” in. Jan. 2011, pp. 73–105. doi: 10.1007/978-0-387-
85820-3_3.
38
[18] B. Paudel, F. Christoffel, C. Newell, and A. Bernstein, “Updatable, accurate, diverse,
and scalable recommendations for interactive applications,” ACM Trans.
Interact. Intell. Syst., vol. 7, no. 1, Dec. 2016, issn: 2160-6455. doi: 10 . 1145 /
2955101. [Online]. Available: https://doi.org/10.1145/2955101.
[19] Q. Chen, H. Zhao, W. Li, P. Huang, and W. Ou, “Behavior sequence transformer
for e-commerce recommendation in alibaba,” CoRR, vol. abs/1905.06874, 2019.
arXiv: 1905.06874. [Online]. Available: http://arxiv.org/abs/1905.06874.
[20] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara, “Variational autoencoders
for collaborative filtering.,” in WWW , P.-A. Champin, F. L. Gandon, M. Lalmas,
and P. G. Ipeirotis, Eds., ACM, 2018, pp. 689–698. [Online]. Available: http :
//dblp.uni-trier.de/db/conf/www/www2018.html#LiangKHJ18.
[21] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua, “Neural collaborative
filtering,” CoRR, vol. abs/1708.05031, 2017. arXiv: 1708.05031. [Online]. Available:
http://arxiv.org/abs/1708.05031.
[22] H. Wang, N. Wang, and D. Yeung, “Collaborative deep learning for recommender
systems,” CoRR, vol. abs/1409.2944, 2014. arXiv: 1409.2944. [Online]. Available:
http://arxiv.org/abs/1409.2944.
[23] G. Zhou, C. Song, X. Zhu, X. Ma, Y. Yan, X. Dai, H. Zhu, J. Jin, H. Li, and K.
Gai, “Deep interest network for click-through rate prediction,” 2017.
[24] G. Zhou, N. Mou, Y. Fan, Q. Pi, W. Bian, C. Zhou, X. Zhu, and K. Gai, “Deep interest
evolution network for click-through rate prediction,” ArXiv, vol. abs/1809.03672,
2019.
[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” CoRR, vol. abs/1706.03762, 2017.
arXiv: 1706.03762. [Online]. Available: http://arxiv.org/abs/1706.03762.
[26] Y. Feng, F. Lv, W. Shen, M. Wang, F. Sun, Y. Zhu, and K. Yang, “Deep session
interest network for click-through rate prediction,” CoRR, vol. abs/1905.06482,
2019. arXiv: 1905 . 06482. [Online]. Available: http : / / arxiv . org / abs / 1905 .
06482.
[27] C. Cooper, S. Lee, T. Radzik, and Y. Siantos, “Random walks in recommender
systems: Exact computation and simulations,” Apr. 2014, pp. 811–816. doi: 10.
1145/2567948.2579244.
[28] T. Ebesu, B. Shen, and Y. Fang, “Collaborative memory network for recommendation
systems,” CoRR, vol. abs/1804.10862, 2018. arXiv: 1804.10862. [Online].
Available: http://arxiv.org/abs/1804.10862.
[29] B. Hu, C. Shi, W. Zhao, and P. Yu, “Leveraging meta-path based context for topn
recommendation with a neural co-attention model,” Aug. 2018. doi: 10.1145/
3219819.3219965.
39
[30] X. Li and J. She, “Collaborative variational autoencoder for recommender systems,”
in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’17, Halifax, NS, Canada: Association for
Computing Machinery, 2017, pp. 305–314, isbn: 9781450348874. doi: 10.1145/
3097983. 3098077. [Online]. Available: https: // doi. org/ 10. 1145/ 3097983.
3098077. |