參考文獻 |
[1] Rafael Alencar. 2017. Resampling strategies for imbalanced datasets. Kaggle. (2017). https://www.kaggle.com/rafjaa/resampling-strategies-for-imbalanceddatasets
[2] Alibaba. 2018. X-deeplearning. Github. (2018). https://github.com/alibaba/xdeeplearning
[3] Naomi S Altman. 1992. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46, 3, 175–185. doi: 10.2307/2685209
[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate. (2014). arXiv: 1409.0473 [cs.CL]
[5] Oren Barkan and Noam Koenigstein. 2016. Item2vec: neural item embedding for collaborative filtering. 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), (September 2016). doi: 10.1109/mlsp.2016.7738886
[6] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: a scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16). Association for Computing Machinery, San Francisco, California, USA, 785–794. isbn: 9781450342322. doi: 10.1145/2939672.2939785
[7] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. 2016. Wide & deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems (DLRS 2016). Association for Computing Machinery, Boston, MA, USA, 7–10. isbn: 9781450347952. doi: 10.1145/2988450.2988454
[8] François Chollet et al. 2015. Keras. (2015). https://keras.io
[9] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for youtube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys ’16). Association for Computing Machinery, Boston, Massachusetts, USA, 191–198. isbn: 9781450340359. doi: 10.1145/2959100.2959190
[10] Yufei Feng, Fuyu Lv, Weichen Shen, Menghan Wang, Fei Sun, Yu Zhu, and Keping Yang. 2019. Deep session interest network for click-through rate prediction. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, (August 2019). doi: 10.24963/ijcai.2019/319
[11] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. 1992. Using collaborative filtering to weave an information tapestry. Commun. ACM, 35, 12, (December 1992), 61–70. issn: 0001-0782. doi: 10.1145/138859.138867
[12] Mihajlo Grbovic and Haibin Cheng. 2018. Real-time personalization using embeddings for search ranking at airbnb. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’18). Association for Computing Machinery, London, United Kingdom, 311–320. isbn: 9781450355520. doi: 10.1145/3219819.3219885
[13] Long Guo, Lifeng Hua, Rongfei Jia, Binqiang Zhao, Xiaobo Wang, and Bin Cui. 2019. Buying or browsing?: predicting real-time purchasing intent using attentionbased deep network with multiple behavior. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’19). Association for Computing Machinery, Anchorage, AK, USA, 1984–1992. isbn: 9781450362016. doi: 10.1145/3292500.3330670
[14] F. Maxwell Harper and Joseph A. Konstan. 2015. The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst., 5, 4, Article 19, (December 2015), 19 pages. issn: 2160-6455. doi: 10.1145/2827872
[15] Jeff Johnson, Matthijs Douze, and Herve Jegou. 2019. Billion-scale similarity search with gpus. IEEE Transactions on Big Data. issn: 2372-2096. doi: 10.1109/tbdata.2019.2921572
[16] Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. 2017. Imbalancedlearn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research, 18, 17, 1–5. issn: 1532-4435. http://jmlr.org/papers/v18/16-365.html
[17] G. Linden, B. Smith, and J. York. 2003. Amazon.com recommendations: item-toitem collaborative filtering. IEEE Internet Computing, 7, 1, 76–80. doi: 10.1109/MIC.2003.1167344
[18] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H. Chi. 2018. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’18). Association for Computing Machinery, London, United Kingdom, 1930–1939. isbn: 9781450355520. doi: 10.1145/3219819.3220007
[19] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: large-scale machine learning on heterogeneous systems. (2015). https://www.tensorflow.org/
[20] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector space. (2013). arXiv: 1301.3781 [cs.CL]
[21] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed representations of words and phrases and their compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2 (NIPS’13). Curran Associates Inc., Lake Tahoe, Nevada, 3111–3119.
[22] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn: machine learning in python. Journal of Machine Learning Research, 12, 85, 2825–2830. issn: 1532-4435. http://jmlr.org/papers/v12/pedregosa11a.html
[23] Radim Řehůřek and Petr Sojka. 2010. Software framework for topic modelling with large corpora. In Proceedings of LREC 2010 workshop New Challenges for NLP Frameworks. University of Malta, Valletta, Malta, 46–50. isbn: 2-9517408-6-7
[24] Xin Rong. 2014. Word2vec parameter learning explained. (2014). arXiv: 1411.2738 [cs.CL]
[25] Ying Shan, T. Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and JC Mao. 2016. Deep crossing: web-scale modeling without manually crafted combinatorial features. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16). Association for Computing Machinery, San Francisco, California, USA, 255–262. isbn: 9781450342322. doi: 10.1145/2939672.2939704
[26] M. Slaney and M. Casey. 2008. Locality-sensitive hashing for finding nearest neighbors [lecture notes]. IEEE Signal Processing Magazine, 25, 2, 128–131. doi: 10.1109/MSP.2007.914237
[27] 2006. Introduction to data mining. (1st edition). Addison-Wesley. Chapter 8, 500. isbn: 0321321367
[28] TIANCHI. 2018. User behavior data from taobao for recommendation. Website. (May 2018). https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
[29] I. Tomek. 1976. Two modifications of cnn. IEEE Transactions on Systems, Man, and Cybernetics, SMC-6, 11, 769–772. doi: 10.1109/TSMC.1976.4309452
[30] Weinan Zhang, Tianming Du, and Jun Wang. 2016. Deep learning over multi-field categorical data. Advances in Information Retrieval, 45–57. issn: 1611-3349. doi: 10.1007/978-3-319-30671-1_4
[31] Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, and Ed Chi. 2019. Recommending what video to watch next: a multitask ranking system. In Proceedings of the 13th ACM Conference on Recommender Systems (RecSys ’19). Association for Computing Machinery, Copenhagen, Denmark, 43–51. isbn: 9781450362436. doi: 10.1145/3298689.3346997
[32] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu, and Kun Gai. 2019. Deep interest evolution network for click-through rate prediction. Proceedings of the AAAI Conference on Artificial Intelligence, 33, (July 2019), 5941–5948. issn: 2159-5399. doi: 10.1609/aaai.v33i01.33015941
[33] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’18). Association for Computing Machinery, London, United Kingdom, 1059–1068. isbn: 9781450355520. doi: 10.1145/3219819.3219823 |