博碩士論文 107522131 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:34.228.229.51
姓名 林聖揚(Sheng-Yang Lin)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 太極大師:基於太極拳的注意力訓練遊戲, 使用動作辨識及平衡分析進行表現評估
(Tai Chi Master: A Tai Chi-based attention training game using action recognition and balance analysis)
相關論文
★ 從EEG解釋虛擬實境的干擾對注意力的影響★ 利用分層共現網絡評估發展遲緩兒童的精細運動
★ 在虛擬現實場景中利用多種生理資料進行高壓駕駛的壓力識別
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在這項研究中,為了使通過太極拳進行注意力訓練更加有效和容易,我們提出了一種新穎的基於太極拳的注意力訓練遊戲,該遊戲指導受試者使用虛擬現實(VR)和運動分析來練習太極拳。通過演示一系列太極拳動作的虛擬教練,受試者可以隨時跟踪教練的動作。同時,動作捕捉設備會收集對象的身體關節3D位置,並使用深度學習模型進行進一步分析,以評估太極拳動作的順序正確性和準確性。我們利用遷移學習技術解決了太極拳數據量較小的問題。在對20名正常人進行的初步測試中,太極拳動作的識別準確率達到了超過96%,並且在一定程度上,平衡分析反映了人體重心的位置變化。我們還比較了經過和未經過遷移學習的模型的性能,以證明轉移學習的重要性。這些探索的結果表明,該原型系統可作為注意力訓練系統的可行性,並且有可能成為輔助治療方案。
摘要(英) In this study, to make the attention training through Tai Chi more effective and easier, we proposed a novel Tai Chi-based attention training game that instructs the subject to practice Tai Chi using Virtual Reality (VR) and motion analysis. Through a virtual instructor demonstrating a series of Tai Chi action, subject is asked to follow the instructor’s movement at any time. Meanwhile, subject’s body joints 3D position is collected by motion capture device for further analyze using a deep learning model to evaluate the order correctness and precision of the Tai Chi actions. Transfer learning technique is utilized to solve the problem of small size of Tai Chi data. Preliminary tests with 20 normal individuals, the recognition accuracy of Tai Chi actions reached to nearly 97%, and to a certain extent, the balance analysis reflected the position change of the body’s center of mass. We also compared the performance of the model with and without pre-trained to demonstrate the importance of transfer learning. The result of these explorations shows the feasibility of this prototype system as an attention training system and it’s potential of being an auxiliary treatment option.
關鍵字(中) ★ 過動症
★ 太極拳
★ 虛擬現實
★ Kinect
★ 動作識別
關鍵字(英) ★ ADHD
★ Tai Chi
★ virtual reality
★ Kinect
★ action recognition
論文目次 Table of Contents
摘要 I
Abstract II
致謝 III
Table of Contents IV
List of Figures VI
List of Tables VII
1. Introduction 1
1.1 Motivation and proposed goal 1
1.2 Organization of thesis 6
2. Related Works 7
3. System Design 10
3.1 System Architecture 11
3.2 Training Process and Data collection 12
3.3 Analysis Approach 14
4. Experiment Setup 20
5. Results 21
6. Discussion and Future Work 28
7. Conclusion 31
Reference 32
參考文獻 Reference
[1] S.V. Faraone, J. Biederman, E. Mick, The age-dependent decline of attention deficit hyperactivity disorder: A meta-analysis of follow up studies. Psychological Medicine, 36 (2006), pp. 159-165.
[2] Connor, D. F., Stimulants. In Barkley, R. A. (Ed.), Attention-deficit hyperactivity disorder: A handbook for diagnosis and treatment (3rd ed. (2006), pp. 608-648). New York, NY: Guilford Press.
[3] Wigal, S. B., Emmerson, N., Gehricke, J. G., & Galassetti, P. Exercise: Applications to childhood ADHD. Journal of Attention Disorders, 17 (2013), 279-290.
[4] Chronis, A. M., Jones, H. A., & Raggi, V. L., Evidence-based psychosocial treatments for children and adolescents with attention-deficit/hyperactivity disorder. Clinical Psychology Review, 26 (2006), 486-502.
[5] Pelham, W. E., Jr., & Fabiano, G. A., Evidence-based psychosocial treatments for attention-deficit/hyperactivity disorder. Journal of Clinical Child & Adolescent Psychology, 37 (2008), 184-214.
[6] Barranco-Ruiz, Y.; Esturo Etxabe, B.; Ramírez-Vélez, R.; Villa-González, E. Interventions Based on Mind–Body Therapies for the Improvement of Attention-Deficit/Hyperactivity Disorder Symptoms in Youth: A Systematic Review. Medicina 2019, 55, 325.
[7] Herbert, A.; Esparham, A. Mind-body therapy for children with attention-deficit/hyperactivity disorder. Children2017,4, 31.
[8] E. E. Stone and M. Skubic, Fall Detection in Homes of Older Adults Using the Microsoft Kinect, in IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 1, pp. 290-301, Jan. 2015.
[9] P. Chen, Y. Du, C. Shih, L. Yang, H. Lin and S. Fan, "Development of an upper limb rehabilitation system using inertial movement units and kinect device," 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE), Tainan, 2016, pp. 275-278
[10] W. Zhao, "On automatic assessment of rehabilitation exercises with real time feedback," 2016 IEEE International Conference on Electro Information Technology (EIT), Grand Forks, ND, 2016, pp. 0376-0381.
[11] P. Gamito et al., “Cognitive training on stroke patients via virtual reality based serious games,” Disability Rehabil., vol. 39, no. 4, pp. 385–388, 2017.
[12] B. S. Lange et al., “The potential of virtual reality and gaming to assist successful aging with disability,” Phys.Med. Rehabil. Clin., vol. 21, no. 2, pp. 339–356, 2010.
[13] R. J. Adams, M. D. Lichter, E. T. Krepkovich, A. Ellington, M. White and P. T. Diamond, "Assessing Upper Extremity Motor Function in Practice of Virtual Activities of Daily Living," in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 23, no. 2, pp. 287-296, March 2015.
[14] M. Capecci et al., "Accuracy evaluation of the Kinect v2 sensor during dynamic movements in a rehabilitation scenario," 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, 2016, pp. 5409-5412.
[15] H. Oagaz, B. Schoun, M. Pooji and M. Choi, "Neurocognitive Assessment in Virtual Reality Through Behavioral Response Analysis," in IEEE Journal of Biomedical and Health Informatics, vol. 23, no. 5, pp. 1899-1910, Sept. 2019.
[16] N. Norouzi-Gheidari, M. F. Levin, J. Fung and P. Archambault, "Interactive virtual reality game-based rehabilitation for stroke patients," 2013 International Conference on Virtual Rehabilitation (ICVR), Philadelphia, PA, 2013, pp. 220-221.
[17] L. P. Lowes et al., “Proof of concept of the ability of the kinect to quantify upper extremity function in dystrophinopathy,” PLoS Curr., vol. 5, 2013.
[18] A. Gonz´alez et al., “Estimation of the center of mass with Kinect and Wii balance board,” in Proc. 2012 IEEE/RSJ Int. Conf. IEEE Intell. Robots Syst., 2012, pp. 1023–1028.
[19] M. Zhu et al., “An objective balance error scoring system for sideline concussion evaluation using duplex Kinect sensors,” Sensors, vol. 17, no. 10, 2017, Art. no. E2398
[20] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and GangWang. NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis. In CVPR, June, 2016.
[21] C. Lai, Y. Huang, T. Liao, C. Tseng, Y. Chen and D. Erdenetsogt, "A Microsoft Kinect-Based Virtual Rehabilitation System to Train Balance Ability for Stroke Patients," 2015 International Conference on Cyberworlds (CW), Visby, 2015, pp. 54-60.
[22] R. J. Adams et al., "Virtual Activities of Daily Living for Recovery of Upper Extremity Motor Function," in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 1, pp. 252-260, Jan. 2018.
[23] Gordon Millichap, J. (2011). Attention deficit hyperactivity disorder handbook: A physician’s guide to ADHD (2nd ed.). New York, NY: Springer Science & Business Media.
[24] Rodrigues JMSM, Mestre MICP, Matos LC, Machado JP. Effects of Taijiquan andqigong practice over behavioural disorders in school-age children: a pilotstudy. J Bodyw Mov Ther 2019;23(1):11–5.
[25] S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu, Spatio-temporal attention-based LSTM networks for 3D action recognition and detection,′′ IEEETrans. Image Process., vol. 27, no. 7, pp. 34593471, Jul. 2018.
[26] S. Zhang, J. Xiao, X. Liu, Y. Yang, D. Xie, Y. Zhuang “Fusing geometric features for skeleton-based action recognition using multilayer lstm networks” IEEE Trans. Multimed., PP (99) (2018)
[27] Yong Du, Yun Fu, and Liang Wang. Skeleton based action recognition with convolutional neural network. In Pattern Recognition, pages 579–583, 2016.
[28] Li, Chao; Zhong, Qiaoyong; Xie, Di; Pu, Shiliang, " Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation “, eprint arXiv:1804.06055, April 2018
[29] L. Cao, C. Fan, H. Wang and G. Zhang, "A Novel Combination Model of Convolutional Neural Network and Long Short-Term Memory Network for Upper Limb Evaluation Using Kinect-Based System," in IEEE Access, vol. 7, pp. 145227-145234, 2019.
[30] Kim SM, Hyun GJ, Jung TW, et al. Balance Deficit and Brain Connectivity in Children with Attention-Deficit/Hyperactivity Disorder. Psychiatry Investig. 2017;14(4):452–457. doi:10.4306/pi.2017.14.4.452
[31] R. Contini et al., “Determination of body segment parameters,” Hum. Factors, vol. 5, no. 5, pp. 493–504, 1963
[32] T. Niiler et al., “The distance between the center of mass and the inter-foot line is a clinically significant proxy for assessing dynamic balance in gait,” presented at the Smith Symp., Pennsylvania State Univ., York, PA, USA,2012.
[33] S. Yeh et al., "A Virtual-Reality System Integrated with Neuro-Behavior Sensing for Attention-Deficit / Hyperactivity Disorder Intelligent Assessment," in IEEE Transactions on Neural Systems and Rehabilitation Engineering, doi: 10.1109/TNSRE.2020.3004545.
[34] S. Gaglio, G. L. Re and M. Morana, "Human Activity Recognition Process Using 3-D Posture Data," in IEEE Transactions on Human-Machine Systems, vol. 45, no. 5, pp. 586-597, Oct. 2015, doi: 10.1109/THMS.2014.2377111.
[35] J. Qi, Z. Wang, X. Lin and C. Li, "Learning Complex Spatio-Temporal Configurations of Body Joints for Online Activity Recognition," in IEEE Transactions on Human-Machine Systems, vol. 48, no. 6, pp. 637-647, Dec. 2018, doi: 10.1109/THMS.2018.2850301.
指導教授 葉士青 吳曉光(Shih-Ching Yeh Hsiao-Kuang Wu) 審核日期 2020-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明