博碩士論文 107522133 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.118.193.232
姓名 李丞洋(Cheng-Yang Li)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 利用分層共現網絡評估發展遲緩兒童的精細運動
(Exploiting Hierarchical Co-occurrence Network to Assess The Fine Motor for Children with Developmental Delays)
相關論文
★ 從EEG解釋虛擬實境的干擾對注意力的影響★ 使用虛擬教室遊戲的基於融合的深度學習注意缺陷多動障礙評估方法
★ 太極大師:基於太極拳的注意力訓練遊戲, 使用動作辨識及平衡分析進行表現評估★ 比較XRSPACE MANOVA中手勢和控制器互動模式的用戶體驗
★ 基於骨架步態藉由機器學習進行臨床老化衰落分類★ 用於注意力不足過動症診斷的可解釋多模態融合模型
★ 基於深度學習的虛擬現實腦震盪檢測與融合方法★ 在虛擬現實場景中利用多種生理資料進行高壓駕駛的壓力識別
★ 基於V模型、醫療器材標準和FDA指南的新醫療器材軟體開發流程:以ADHD虛擬實境教室為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在精細動作發展的應用中,應考慮即早性、普遍性、訓練的持續性和運動過程的紀錄。許多研究在兒童時期即給予早期評估和療育,然而並非所有的精細動作發展遲緩患者都能得到良好的療育資源,傳統的介入需要治療師在場並使用訓練系統和評估量表進行療育,在目前供不應求的情況下,治療師自然難以到偏鄉給予長期的治療。因此,我們開發了一款線評估的遠端系統,並提出了一種新穎的精細動作品質評估方法,該方法通過使用人機互動、骨架追蹤技術收集兒童的精細運動,然後使用深度學習模型對兒童的精細動作質量進行分析。使用人機交互技術來開發遊戲可以提高孩子的參與感並記錄整個評估過程,並搭配Leap Motion Controller (LMC)感測器,它具有出色的手部追蹤效果。為了證明分層共現網絡識別動態精細動作的有效性,使用Shape Retrieval Contest(SHREC)數據集進行驗證,結果也證明此方法的準確性勝過當前文獻的方法。之後,我們使用轉移學習技術來轉移公開數據集的知識,實驗也證實了更好的評估。
摘要(英) In the application of the development of fine motor, consideration should be given to the earlyness, universality, continuity of training and the record of the motor process. Many research have been given early assessment and intervention during childhood, but not all patients with developmental delays of fine motor can receive good treatment resources. Traditional intervention requires therapist to use the training system and assessment scale for treatment on the spot, which is currently in short supply. it is difficult for the therapist to go to a remote area for long-term treatment. Therefore, we have developed a remote system that can achieve online assessment, and also proposed a novel method for fine motor quality assessment that collect children′s fine motor using human–computer interaction, skeleton tracking technology, and then use the deep learning model to analyze the quality of the fine motor. Using human-computer interaction technology to develop games can increase children′s sense of participation and record the entire assessment process. Hand interaction uses Leap Motion Controller (LMC), which has excellent hand tracking effect. In order to prove the effectiveness of the Hierarchical Co-occurrence Network (HCN) to recognize dynamic fine motor. we used the Shape Retrieval Contest (SHREC) dataset for verification, the method was also proven to outperform in accuracy competing approaches of the current literature. After that, we use transfer learning technology to transfer the knowledge of the open dataset, the experiment also confirmed a better assessment.
關鍵字(中) ★ 早療
★ 精細動作
★ 骨架追蹤
★ 分層共現網路
★ 轉移學習
關鍵字(英) ★ early intervention
★ fine motor
★ skeleton tracking
★ hierarchical co-occurrence network
★ transfer learning
論文目次 摘要 I
Abstract II
致謝 IV
Table of Contents V
List of Figures VII
List of Tables VIII
1. Introduction 1
1.1 Background 1
1.2 The progress of human-computer interaction 3
1.3 Skeleton-based gesture recognition 4
1.4 The development of transfer learning 6
2. Related Works 9
2.1 Early intervention 9
2.2 Fine motor 10
2.3 Machine learning for gesture recognition 10
3. Methodology 14
3.1 System design 14
3.2 Game implementation 15
3.3 Hierarchical Co-occurrence Network 17
3.4 Transfer learning 20
3.4.1 Method framework 20
3.4.2 Coordinate system conversion 21
4. Experiment Result 22
4.1 SHREC dataset 22
4.2 The effect of transfer learning 23
5. Discussions 26
6. Conclusion & Future Work 27
List of Reference 28
參考文獻 List of Reference
[1] Cameron, Claire E., et al. "Fine motor skills and executive function both contribute to kindergarten achievement." Child development 83.4 (2012): 1229-1244.
[2] Kim, Helyn, et al. "Psychometric properties of the teacher-reported Motor Skills Rating Scale." Journal of Psychoeducational Assessment 33.7 (2015): 640-651
[3] Dehghan, Leila, et al. "The Relationship Between Fine Motor Skills and Social Development and Maturation." Iranian Rehabilitation Journal 15.4 (2017): 407-414.
[4] Collins, Pamela Y., et al. "Global services and support for children with developmental delays and disabilities: Bridging research and policy gaps." PLoS Medicine 14.9 (2017): e1002393.
[5] Mullen, Eileen M. Mullen scales of early learning. Circle Pines, MN: AGS, 1995
[6] Boutsika, Evgenia. "Kinect in education: A proposal for children with autism." Procedia Computer Science 27.1 (2014): 123-129.
[7] Martin-SanJose, Juan-Fernando, et al. "Advanced displays and natural user interfaces to support learning." Interactive Learning Environments 25.1 (2017): 17-34.
[8] Weichert, Frank, et al. "Analysis of the accuracy and robustness of the leap motion controller." Sensors 13.5 (2013): 6380-6393.
[9] Cook, T. M. "Personal protective equipment during the COVID‐19 pandemic–a narrative review." Anaesthesia (2020).
[10] Du, Yong, Yun Fu, and Liang Wang. "Skeleton based action recognition with convolutional neural network." 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR). IEEE, 2015.
[11] Li, Chao, et al. "Skeleton-based action recognition with convolutional neural networks." 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE, 2017.
[12] Li, Chao, et al. "Co-occurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation." arXiv preprint arXiv:1804.06055 (2018).
[13] De Smedt, Quentin, et al. "Shrec′17 track: 3d hand gesture recognition using a depth and skeletal dataset." 2017.
[14] Devineau, Guillaume, et al. "Convolutional neural networks for multivariate time series classification using both inter-and intra-channel parallel convolutions." 2018.
[15] Hou, Jingxuan, et al. "Spatial-temporal attention res-TCN for skeleton-based dynamic hand gesture recognition." Proceedings of the European Conference on Computer Vision (ECCV). 2018.
[16] Yang, Fan, et al. "Make Skeleton-based Action Recognition Model Smaller, Faster and Better." Proceedings of the ACM Multimedia Asia on ZZZ. 2019. 1-6.
[17] Nunez, Juan C., et al. "Convolutional neural networks and long short-term memory for skeleton-based human activity and hand gesture recognition." Pattern Recognition 76 (2018): 80-94.
[18] Brown, Ted, and Aislinn Lalor. "The movement assessment battery for children—second edition (MABC-2): a review and critique." Physical & occupational therapy in pediatrics 29.1 (2009): 86-103.
[19] Piek, Jan P., et al. "The role of early fine and gross motor development on later motor and cognitive ability." Human movement science 27.5 (2008): 668-681.
[20] Dardas, Nasser H., and Nicolas D. Georganas. "Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques." IEEE Transactions on Instrumentation and measurement 60.11 (2011): 3592-3607.
[21] Marin, Giulio, Fabio Dominio, and Pietro Zanuttigh. "Hand gesture recognition with leap motion and kinect devices." 2014 IEEE International conference on image processing (ICIP). IEEE, 2014.
[22] Wang, Youwen, et al. "Kinect based dynamic hand gesture recognition algorithm research." 2012 4th international conference on intelligent human-machine systems and cybernetics. Vol. 1. IEEE, 2012.
[23] Liu, Kui, et al. "Fusion of inertial and depth sensor data for robust hand gesture recognition." IEEE Sensors Journal 14.6 (2014): 1898-1903.
[24] Hsu, Yu-Liang, et al. "An inertial pen with dynamic time warping recognizer for handwriting and gesture recognition." IEEE Sensors Journal 15.1 (2014): 154-163.
[25] Plouffe, Guillaume, and Ana-Maria Cretu. "Static and dynamic hand gesture recognition in depth data using dynamic time warping." IEEE transactions on instrumentation and measurement 65.2 (2015): 305-316.
[26] Côté-Allard, Ulysse, et al. "Deep learning for electromyographic hand gesture signal classification using transfer learning." IEEE Transactions on Neural Systems and Rehabilitation Engineering 27.4 (2019): 760-771.
[27] Ponraj, Godwin, and Hongliang Ren. "Sensor fusion of leap motion controller and flex sensors using Kalman filter for human finger tracking." IEEE Sensors Journal 18.5 (2018): 2042-2049.
[28] De Smedt, Quentin, Hazem Wannous, and Jean-Philippe Vandeborre. "Skeleton-based dynamic hand gesture recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2016.
[29] Rosenberg, Steven A., Duan Zhang, and Cordelia C. Robinson. "Prevalence of developmental delays and participation in early intervention services for young children." Pediatrics 121.6 (2008): e1503-e1509.
[30] Scherzer, Alfred L., et al. "Global perspective on early diagnosis and intervention for children with developmental delays and disabilities." Developmental Medicine & Child Neurology 54.12 (2012): 1079-1084.
[31] Majnemer, Annette. "Benefits of early intervention for children with developmental disabilities." Seminars in pediatric neurology. Vol. 5. No. 1. WB Saunders, 1998.
[32] Lefebvre, Grégoire, et al. "BLSTM-RNN based 3D gesture classification." International conference on artificial neural networks. Springer, Berlin, Heidelberg, 2013.
[33] Tai, Tsung-Ming, et al. "Sensor-based continuous hand gesture recognition by long short-term memory." IEEE sensors letters 2.3 (2018): 1-4.
[34] Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks." arXiv preprint arXiv:1410.3916 (2014).
[35] Sainath, Tara N., et al. "Convolutional, long short-term memory, fully connected deep neural networks." 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015.
[36] Chatfield, Ken, et al. "Return of the devil in the details: Delving deep into convolutional nets." arXiv preprint arXiv:1405.3531 (2014).
[37] Ke, Qiuhong, et al. "A new representation of skeleton sequences for 3d action recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
[38] Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." IEEE Transactions on knowledge and data engineering 22.10 (2009): 1345-1359.
[39] Wang C, Mahadevan S. Heterogeneous domain adaptation using manifold alignment. In: Proceedings of the 22nd international joint conference on artificial intelligence, vol. 2. 2011. p. 541–46.
[40] Duan, Lixin, Dong Xu, and Ivor Tsang. "Learning with augmented features for heterogeneous domain adaptation." arXiv preprint arXiv:1206.4660 (2012).
[41] Zhou, Joey Tianyi, et al. "Hybrid heterogeneous transfer learning through deep learning." Proceedings of the national conference on artificial intelligence. 2014.
[42] Alnujaim, Ibrahim, et al. "Hand gesture recognition using input impedance variation of two antennas with transfer learning." IEEE Sensors Journal 18.10 (2018): 4129-4135.
[43] Côté-Allard, Ulysse, et al. "Deep learning for electromyographic hand gesture signal classification using transfer learning." IEEE Transactions on Neural Systems and Rehabilitation Engineering 27.4 (2019): 760-771.
[44] Bronfenbrenner, Urie. "Is early intervention effective?." Day Care and Early Education 2.2 (1974): 14-18. impact of microsoft kinect on physical therapy and rehabilitation." Journal of medical engineering 2014 (2014).
指導教授 葉士青 吳曉光(Shih-Ching Yeh Hsiao-Kuang Wu) 審核日期 2020-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明