博碩士論文 107522606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.236.156.34
姓名 黎亞妮(Amalia Kartika Ariyani)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱 具池化策略 Simplified Linear Discriminant Analysis 使用於連續智慧型手機用戶認證中應付操作行為改變
(Simplified LDA with Pooling Strategy to Handle User Behavior Change on Continuous Smartphone Authentication)
相關論文
★ 基於最大期望算法之分析陶瓷基板機器暗裂破片率★ 基於時間序列預測的機器良率預測
★ 基於OpenPose特徵的行人分心偵測★ 建構深度學習CNN模型以正確分類傳統AOI模型之偵測結果
★ 一種結合循序向後選擇法與回歸樹分析的瑕疵肇因關鍵因子擷取方法與系統-以紡織製程為例★ 應用方位感測器之手機使用者識別機制
★ 非侵入式多模組之手機使用者識別機制 :基於動態方法★ 多分類器組合應用於財務危機預測
★ 漸進式模型應用於財務危機預測問題★ Bus Arrival Prediction - to Ensure Users Not to Miss the Bus (Preliminary Study based on Bus Line 243 Taipei)
★ 公車路線規劃系統之資料自動收集系統實作★ 特徵挑選方法和分類器在財務危機預測問題中比較
★ OR ensemble 應用於財務危機預測★ 智慧型手機使用者操作姿勢對於非侵入式識別機制的影響分析:基於動態方法
★ 工業生產線數據分析平台之自動化測試與實作案例★ 公司治理指標在財務危機預測: 以台灣上市上櫃公司為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-8-1以後開放)
摘要(中) 智慧型手機已成為使用者日常執行各種活動的智慧行動裝置,而智慧型手機也逐漸需要受到保護以防個人資料遭到非法存取。過去提出使用兩階段認證:傳統認證與行為認證來加強安全性,然而在行為認證方面,使用者於不同的使用情境時常有不同的操作行為,隨著時間推移,資料逐漸變得不可靠,且因模型無法應對使用行為改變而使合法使用者進行認證時失敗。因此,使用者行為模型必須隨時重新訓練以解決這個問題。
重新訓練模型之方法會使用所有過去模型的資料來訓練新的模型,但這會造成程序耗竭且佔用大量資源。因此,我們提出一種輕量且快速的分類器:具有池化策略的簡化線性判別分析,在快速的訓練時間且不犧牲等錯誤率的狀況下來解決使用者行為改變的問題。在這份研究中,我們比較四種方法來評估我們所提出的模型,分別是M0-B SVM當作最佳基準模型、無重新訓練的M0-W1 LDA與M0-W2 SVM當作最差基準模型、以及具有池化策略的M1-Simplified LDA為我們提出的模型。實驗結果顯示我們提出的模型M1的等錯誤率為0.085,比經6次迭代的M0-W1的0.146及M0-W2的0.104還要好,而M0-B的等錯誤率為0.043。 不過M1僅有0.044秒的訓練時間及,0.029秒的測試時間,快於其他三種發法。M0-W1的訓練時間為0.344秒,M0-B的訓練時間為0.614秒,而M0-W2的測試時間為0.074秒。
摘要(英) Smartphones are one of the smart devices that become a daily driver for users to perform various activities that has to be secured on their smartphone to protect these personal data from unauthorized access. Two-step authentication using traditional and behavioral authentication was proposed to strengthen the security. However, in behavioral authentication, users tend to use their smartphone on different posture on different activities, it will make user data unstable and change over time and will cause the authentication process failed to predict as a legitimate user because the previous authentication model cannot handle user behavior change. Thus, the user model has to be retrained over time to handle the problem.
Retraining approach keeps all previous data to retrain the new model, it will cause the exhausting process and will take a large number of resources. Hence, we proposed a lightweight and fast classifier using Simplified LDA with pooling strategy to handle user behavior change with faster training time without sacrificing the Equal Error Rate (EER). In this research, we compared four approaches to evaluate the proposed model, M0-B SVM as the best baseline model, M0-W1 LDA and M0-W2 SVM non-Retraining as the worst baseline model, and M1-Simplified LDA with pooling strategy as our proposed model. The experiment result shows that the proposed model M1 has EER 0.085, better than M0-W1 which only got EER 0.146 and M0-W2 got 0.104 in the 6th iteration and approached M0-B EER 0.043. M1 also only need 0.044 seconds on training time and 0.029 seconds on testing time, faster than M0-W1 0.344 seconds and M0-B 0.614 seconds training time and M0-W2 0.074 seconds on testing time.
關鍵字(中) ★ 兩步驟連續智慧型手機認證
★ 操作行為改變
★ 線性判別分析
★ 池化策略
關鍵字(英) ★ two-step continuous smartphone authentication
★ behavior change
★ linear discriminant analysis
★ pooling strategy
論文目次 中文摘要 i
ABSTRACT ii
ACKNOWLEDGMENT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
CHAPTER 1 INTRODUCTION 1
1.1. Background 1
1.2. Motivation 3
1.3. Research Objectives 5
1.4. Limitation of Study 6
1.5. Thesis Structure 6
CHAPTER 2 LITERATURE REVIEW 7
2.1. Mobile Authentication 7
2.2. Handling User Behavior Change on Mobile Devices 7
2.3. Linear Discriminant Analysis Classifier 8
2.4. K-Means Clustering 9
2.5. Performance Matrices 10
CHAPTER 3 METHODOLOGY 11
3.1. System Architecture 11
3.2. Data Collection 13
3.3. Data Preprocessing 14
3.2.1. Feature Extraction 15
3.2.2. Feature Transformation 18
3.4. Pooling Strategy 20
3.5. Simplified Linear Discriminant Analysis 21
3.5.1. Training Phase 23
3.5.2. Testing Phase 24
CHAPTER 4 EXPERIMENTAL PROCESS AND RESULT ANALYSIS 26
4.1. Experiment Setup 26
4.2. Experiment Result 29
4.2.1. Equal Error Rate Comparison 29
4.2.2. Training Time and Testing Time Comparison 30
4.3. Discussion 31
4.3.1. Simplified LDA Evaluation 31
4.3.2. Pooling Strategy Evaluation 34
4.3.3. Classifier Performance Comparison 35
CHAPTER 5 CONCLUSION 38
5.1. Conclusion 38
5.2. Future Works 39
BIBLIOGRAPHY 40
參考文獻 [1] S. O′Dea, 28 February 2020. [Online]. Available: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/.
[2] A. A. Alariki, A. B. A. Manaf and S. Khan, "A study of touching behavior for authentication in touch screen smart devices," 2016 International Conference on Intelligent Systems Engineering (ICISE), pp. 216-221, 2016.
[3] B. Chakraborty, K. Nakano, Y. Tokoi and T. Hashimoto, "An Approach for Designing Low Cost Deep Neural Network based Biometric Authentication Model for Smartphone User," TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), pp. 772-777, 2019.
[4] B. Zou and Y. Li, "Touch-based Smartphone Authentication Using Import Vector Domain Description," IEEE 29th International Conference on Application-specific Systems, Architectures and Processors (ASAP), pp. 1-4, 2018.
[5] C.-C. Lin, C.-C. Chang and D. Liang, "A Novel Non-intrusive User Authentication Method Based on Touchscreen of Smartphones," 2013 International Symposium on Biometrics and Security Technologies, pp. 212-216, 2013.
[6] T. V. Bandos, L. Bruzzone and G. Camps-Valls, "Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis," IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 3, pp. 862-873, 2009.
[7] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy and A. Bouchachia, "A Survey on Concept Drift Adaptation," ACM Computing Surveys, vol. 46, pp. 44:1-44:37, 2014.
[8] S. Nick and K. YongSeog, "A Streaming Ensemble Algorithm (SEA) for Large-Scale Classification," in Proceedings of the seventh ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, 2001.
[9] G. Zeira, O. Maimon, M. Last and L. Rokach, "Change detection in classification models induced from time series data," in Data Mining in Time Series Databases, Singapore, World Scientific Publishing Company Incorporated, 2004, pp. 101-125.
[10] R. Klinkenberg, "Predicting Phases in Business Cycles Under Concept Drift," in Machine Learning of the National German Computer Science Society (LLWA), Germany, 2003.
[11] G. Hulten, L. Spencer and P. Domingos, "Mining Time-Changing Data Streams," Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 97-106, 2001.
[12] H. K. Ekenel and R. Stiefelhagen, "Two-class Linear Discriminant Analysis for Face Recognition," 2007 IEEE 15th Signal Processing and Communications Applications, pp. 1-4, 2007.
[13] J. Feng, Y. Zhang, G. Yue, X. Liu, H. Su and P.-F. Zhang, "Atherosclerotic Plaque Pathological Analysis by Unsupervised K-Means Clustering," IEEE Access, vol. 6, pp. 21530-21535, 2018.
[14] S. Wang, M. Li, N. Hu, E. Zhu, J. Hu, X. Liu and J. Yin, "K-Means Clustering With Incomplete Data," IEEE Access, vol. 7, pp. 69162-69171, 2019.
[15] A. K. Jain and R. C. Dubes, Algorithm for Clustering Data, New Jersey: Prentice-Hall, Inc., 1998.
[16] E. Conrad, S. Misenar and J. Feldman, "Identity and access management (controlling access and managing identity)," in Eleventh Hour CISSP (Third Edition), 2017, pp. 117-134.
[17] P. Schober, C. Boer and L. A. Schwarte, "Correlation Coefficients: Appropriate Use and Interpretation," Anesthesia & Analgesia, vol. 126, no. 5, pp. 1763-1768, 2018.
指導教授 梁德容(Deron Liang) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明