博碩士論文 107523047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:3.230.144.31
姓名 陳彥宇(Yen-Yu Chen)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱
(A Lightweight RSSI-Based Device-Free Localization System)
相關論文
★ 基於馬賽克特性之低失真實體電路佈局保密技術★ 多路徑傳輸控制協定下從無線區域網路到行動網路之無縫換手
★ 感知網路下具預算限制之異質性子頻段分配★ 下行服務品質排程在多天線傳輸環境下的效能評估
★ 多路徑傳輸控制協定下之整合型壅塞及路徑控制★ Opportunistic Scheduling for Multicast over Wireless Networks
★ 適用多用戶多輸出輸入系統之低複雜度比例公平性排程設計★ 利用混合式天線分配之 LTE 異質網路 UE 與 MIMO 模式選擇
★ 基於有限預算標價式拍賣之異質性頻譜分配方法★ 適用於 MTC 裝置 ID 共享情境之排程式分群方法
★ Efficient Two-Way Vertical Handover with Multipath TCP★ 多路徑傳輸控制協定下可亂序傳輸之壅塞及排程控制
★ 移動網路下適用於閘道重置之群體換手機制★ 使用率能小型基地台之拍賣是行動數據分流方法
★ 高速鐵路環境下之通道預測暨比例公平性排程設計★ 用於行動網路效能評估之混合式物聯網流量產生器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2022-8-20以後開放)
摘要(中) 免攜帶式定位為一種新興的定位技術,此技術可在目標沒有攜帶任何裝置下透過無線感知網絡中的電磁訊號進行定位。 此項技術的關鍵點在於當目標在監視區域中移動時,如何從無線信號中提取特徵並進行定位。為解決此問題,我們通過將免攜帶式定位問題轉化為多變數時間序列分類問題,並以新興的深度學習方法來處理。此外,我們提出的深度學習模型,稱作LSTM-MSCNN,用以萃取原始無線信號並完成端到端定位服務。另一個重要的問題是如何有效地決定無線設備的放置位置並組建無線感知網路,我們提出了一種兼顧成本效益和定位準確性的設備放置策略來解決此問題。從實驗數據中可以觀察到,本論文所提出的模型在眾多的比較的方法中在不同數量感測器配置上皆取得最高的定位精度。此外,本論文所提出的硬體擺放策略較正常擺放的方法有著百分之二十五的準確率提升,這些結果凸顯了提出的硬體擺放策略的價值,並能以一個有規劃性的方式創建適用於免攜帶式定位所需的環境。
摘要(英) Device-free localization (DFL) is an emerging technology that locates targets without any additional devices via wireless sensor networks. A fundamental problem of DFL is how to extract features from wireless signals while a target is moving in the monitoring area. We address this problem by formulating the DFL as a time series classification problem. Moreover, we propose a deep learning (DL) model taking advantage of long short-term memory (LSTM) and multi-scale convolutional network (MSCNN), called LSTM-MSCNN, for received signal strength (RSS) based localization. The network consists of multiple CNN branches to extract patterns in various time scales; LSTM cells learn the temporal dependencies in the RSS sequences. For device placement planning, we propose a strategy considering cost-effectiveness and localization accuracy. The experimental results show that the proposed model achieves the highest localization accuracy among the compared methods in different sensor implementation stages on real-world data. Additionally, the sensor implement based on the proposed strategy outperforms the uniform implement more than $25\%$ in localization accuracy.
關鍵字(中) ★ 免攜式定位
★ 機器學習
★ 時間序列分類
關鍵字(英) ★ Device-Free Localization
★ Machine Learning
★ Time Series Classification
論文目次 1 Introduction 1
1.1 Background ........................................ 1
1.2 Motivation ........................................ 1
1.3 Contribution ...................................... 4
1.4 Framework ......................................... 4
2 Related Works 5
2.1 Device-Free Localization .......................... 5
2.2 Time Series Classification in Localization ........ 7
3 System Architecture and DFL Problem 8
3.1 System Architecture ............................... 8
3.2 DFL Problem Statement ............................. 9
4 Lightweight RSSI-Based Device-Free Localization System 10
4.1 Infrastructure Placement Strategy ................. 10
4.2 Model Architecture ................................ 13
5 Experiment Evaluation 17
5.1 Experimental Settings ............................. 17
5.1.1 Raw accuracy testing............................. 18
5.1.2 Strategic placement testing ..................... 18
5.2 Experiment Results ................................ 21
5.2.1 Raw Accuracy Performance ........................ 21
5.2.2 Network Comparison .............................. 21
5.2.3 Strategy Enhancement ............................ 24
6 Conclusion and Future Work 26
6.1 Conclusion ........................................ 26
6.2 Future Work ....................................... 26
Bibliography 27
參考文獻 [1] J. Wilson and N. Patwari, “Radio tomographic imaging with wireless networks,”
IEEE Transactions on Mobile Computing, vol. 9, no. 5, pp. 621–632, 2010.
[2] X. Wang, L. Gao, S. Mao, and S. Pandey, “Csi-based fingerprinting for indoor localization:
A deep learning approach,” IEEE Transactions on Vehicular Technology,
vol. 66, no. 1, pp. 763–776, 2017.
[3] D. Konings, F. Alam, F. Noble, and E. M. Lai, “Springloc: A device-free localization
technique for indoor positioning and tracking using adaptive rssi spring relaxation,”
IEEE Access, vol. 7, pp. 56 960–56 973, 2019.
[4] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release: Gathering 802.11n
traces with channel state information,” ACM SIGCOMM CCR, vol. 41, no. 1, p. 53,
Jan. 2011.
[5] X. Wang, X. Wang, and S. Mao, “Deep convolutional neural networks for indoor
localization with csi images,” IEEE Transactions on Network Science and Engineering,
vol. 7, no. 1, pp. 316–327, 2020.
[6] J.Wang, X. Zhang, Q. Gao, H. Yue, and H.Wang, “Device-free wireless localization
and activity recognition: A deep learning approach,” IEEE Transactions on Vehicular
Technology, vol. 66, no. 7, pp. 6258–6267, 2017.
[7] F. Adib and D. Katabi, “See through walls with wifi!” in Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, ser. SIGCOMM ’13. New York, NY,
USA: Association for Computing Machinery, 2013, p. 75–86. [Online]. Available:
https://doi.org/10.1145/2486001.2486039
[8] J. Wang, Q. Gao, H. Wang, Y. Yu, and M. Jin, “Time-of-flight-based radio tomography
for device free localization,” IEEE Transactions on Wireless Communications,
vol. 12, no. 5, pp. 2355–2365, 2013.
[9] M. Bocca, O. Kaltiokallio, N. Patwari, and S. Venkatasubramanian, “Multiple target
tracking with rf sensor networks,” IEEE Transactions on Mobile Computing, vol. 13,
no. 8, pp. 1787–1800, 2014.
[10] S. Yiu, M. Dashti, H. Claussen, and F. Perez-Cruz, “Wireless rssi fingerprinting
localization,” Signal Processing, vol. 131, 07 2016.
[11] B. Mager, P. Lundrigan, and N. Patwari, “Fingerprint-based device-free localization
performance in changing environments,” IEEE Journal on Selected Areas in Communications,
vol. 33, no. 11, pp. 2429–2438, 2015.
[12] X.Wang, L. Gao, and S. Mao, “Csi phase fingerprinting for indoor localization with
a deep learning approach,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1113–
1123, 2016.
[13] W. Zhang, K. Liu, W. Zhang, Y. Zhang, and J. Gu, “Deep neural networks for wireless
localization in indoor and outdoor environments,” Neurocomputing, vol. 194, 03
2016.
[14] D. S.Wang, X. S. Guo, and Y. X. Zou, “Accurate and robust device-free localization
approach via sparse representation in presence of noise and outliers,” in 2016 IEEE
International Conference on Digital Signal Processing (DSP), 2016, pp. 199–203.
[15] H. Huang, H. Zhao, X. Li, S. Ding, L. Zhao, and Z. Li, “An accurate and efficient
device-free localization approach based on sparse coding in subspace,” IEEE Access,
vol. 6, pp. 61 782–61 799, 2018.
[16] J. W. Taylor, P. E. McSharry, and R. Buizza, “Wind power density forecasting using
ensemble predictions and time series models,” IEEE Transactions on Energy
Conversion, vol. 24, no. 3, pp. 775–782, 2009.
[17] R. S. Tsay, Analysis of financial time series. Wiley USA, 2005.
[18] L. C. Alwan and H. V. Roberts, “Time-series modeling for statistical process control,”
Journal of Business & Economic Statistics, vol. 6, no. 1, pp. 87–95, 1988.
[19] E. Keogh and C. Ratanamahatana, “Exact indexing of dynamic time warping,”
Knowledge and Information Systems, vol. 7, pp. 358–386, 01 2005.
[20] Z. Cui, W. Chen, and Y. Chen, “Multi-scale convolutional neural networks for time
series classification,” arXiv preprint arXiv:1603.06995, 2016.
[21] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch with deep
neural networks: A strong baseline,” in 2017 International Joint Conference on Neural
Networks (IJCNN), 2017, pp. 1578–1585.
[22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
A. Rabinovich et al., “Going deeper with convolutions. arxiv 2014,” arXiv
preprint arXiv:1409.4842, vol. 1409, 2014.
[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.
[24] A. Graves, Supervised Sequence Labelling with Recurrent Neural Networks, 01
2012, vol. 385.
[25] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.
[26] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.
[27] F. Karim, S. Majumdar, H. Darabi, and S. Chen, “Lstm fully convolutional networks
for time series classification,” IEEE access, vol. 6, pp. 1662–1669, 2017.
[28] L. Zhao, H. Huang, X. Li, S. Ding, H. Zhao, and Z. Han, “An accurate and robust
approach of device-free localization with convolutional autoencoder,” IEEE Internet
of Things Journal, vol. 6, no. 3, pp. 5825–5840, 2019.
指導教授 黃志煒(Chih-Wei Huang) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明