博碩士論文 107621016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:44.200.194.255
姓名 徐健恩(Chien-En Hsu)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 氣膠對臺灣中部平原夏季降水日變化之影響
(Aerosol-induced variability of diurnal cycle of summertime precipitation over the central plain of Taiwan)
相關論文
★ 鹿林山背景站大氣輻射及氣膠輻射驅動力之研究★ 中南半島生質燃燒氣膠濃度分布之年際變化與其對區域環境衝擊研究
★ 中壢地區光達消光散射比之長期分析與污染物關聯性研究★ 臺灣大氣背景PM2.5質量濃度之推估
★ 雲林斗六PM2.5濃度變化與氣膠光學特性及氣象條件之關聯性研究★ Mapping Surface Solar Radiation with Satellite Data over Taiwan
★ 開發適用於大氣邊界層觀測的無人機系統★ 利用AERONET資料解析中南半島地區氣膠種類及成分
★ 氣膠對臺灣北部暖雲微物理和毛雨的影響★ Characteristics and Corrections of Thermal Offset for Secondary Standard Pyranometers
★ 中南半島生質燃燒氣膠傳送動力機制及區域氣候反饋★ 2019年春季泰國北部無人機觀測實驗: 邊界層特徵與氣膠垂直分布之研究
★ Investigating hygroscopic cloud-seeding effects in liquid-water clouds in northern Taiwan: in-situ measurements and model simulation★ 整合無人機與光達觀測解析斗六地區空污事件之演變過程
★ 氣膠光學及微物理反演法開發:以鹿林山大氣背景站應用為例★ 利用向日葵8號衛星及單層輻射模式反演地面輻射量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氣膠可作為雲凝結核,其數量濃度的增加會導致雲滴有效半徑減小,進而抑制與延遲降水事件發生,使雲的生命週期變長,並對後續降水發生頻率及強度造成影響。然而由於氣膠-雲-降水交互作用的複雜性,加上氣象條件會同時改變氣膠與雲的特性,使得目前科學界對氣膠影響降水系統之瞭解仍有很大的不確定性及挑戰。夏季降水提供臺灣中部平原區主要水資源來源,約佔全年總降水量的60%,降水的多寡與時空分布變化會對當地社會經濟、農業活動產生重大衝擊。隨著快速的都市化與人口增長,加上大氣環境的影響,使中部平原比起鄰近區域有較嚴重的空氣污染情形,增加氣膠效應影響雲與降水的可能性。因此本研究結合2008-2019年6-8月夏季期間,地面與衛星觀測、再分析資料,對氣膠、雲與降水特性進行長期統計分析,由PM2.5資料定義乾淨與污染條件日數,試圖探討氣膠對夏季降水日變化以及雲參數之影響,並提出可能機制進行說明。
研究結果顯示,乾淨條件具有較多的水氣量,風場由夏季季風所主導;污染條件的環境較乾燥,以海陸風環流為主,有利於污染物的累積。考慮相似的環境風場(盛行風向120°-240°範圍)情境下,進行乾淨與污染條件下降水日變化之比較,結果顯示,在14時至19時,污染條件下的降水頻率以及降水強度比乾淨條件大,小時降水發生頻率最高值發生在18時,量值約為12%;降水強度最大值發生在15時,量值約為8 mm hr -1,暗示在高氣膠濃度的環境下,降水傾向發生在一天中較晚的時期,且降水強度較乾淨條件大1-4 mm hr -1。除此之外,檢視所有的午後降水個案後,亦可發現污染條件有較大午後降水強度之特徵。衛星Aqua MODIS (Moderate-Resolution Imaging Spectroradiometer)雲參數的分析中顯示,污染環境比起乾淨環境的暖雲,呈現雲滴有效半徑減小0.99 μm;雲量增加0.09、雲光學厚度增加1.49、雲水光程增加12.97 g m-2;雲頂溫度下降0.91 K之情形。
最後統合觀測分析結果,吾人提出一套氣膠影響降水日變化可能機制。臺灣中部平原夏季所產生的氣膠進入暖雲系統內,使雲滴有效半徑減小,降低碰撞合併效率,改變雲的生命週期,進而抑制上午降水之發生,使雲不易消散且持續發展至更高高度,從而使更多的雲水聚積於雲內,並在午後不穩定的環境下,產生高頻率且高強度之降水。本研究透過長期地面、衛星觀測與再分析資料進行分析,得出氣膠濃度與夏季降水日變化之明確統計關係,未來建議用模式進行個案模擬,以更好瞭解雲內微物理與動力過程,與進行氣膠效應影響之定量。此初步成果可應用於未來中部平原區的儀器部署,以及氣膠-雲-降水交互作用之觀測實驗規劃。
摘要(英) Aerosols can serve as cloud condensation nuclei (CCN), an increase in CCN number concentration results in the decrease of cloud effective radius, thereby suppressing precipitation, delaying raindrop initiation and prolonging cloud lifetimes. Further changes the frequency and intensity of precipitation. Moreover, due to the complex in aerosol-cloud-precipitation interactions (ACPIs) and the coincident impact of meteorological factors on both aerosol and cloud properties. There still remain many challenges and uncertainties for the scientific community about aerosol effects on precipitation system.
Summertime precipitation plays a crucial role in central plain of Taiwan’s water resources, it contributes about 60% to the annual precipitation. Changes in spatio-temporal precipitation amounts will cause influences to local socioeconomics and agricultural activities. With the rapid urbanization coupled with population growth, central plain of Taiwan is subjected to severe air pollution, the likelihood of aerosols impact on clouds and precipitation. This study aims to investigate the ACPIs over central plain of Taiwan with a statistical analysis of long-term observation data from ground-based measurement, satellite-based observation, and reanalysis data. We segregate PM2.5 data into clean and polluted day conditions to study aerosol effects on the diurnal variations of summertime precipitation. Finally, the plausible mechanisms are proposed based on our results.
The results indicate that the high moisture and the dominance of summer monsoon are characterized for clean conditions. The influence of land-sea breeze favors the accumulation of pollutants under polluted conditions. Considering the similar wind field environment scenario (i.e. prevailing wind from 120° to 240°), the diurnal variations of precipitation under clean and polluted conditions are compared. The results show that the frequency and intensity of precipitation under polluted conditions are higher than under clean conditions between 14:00 LST and 19:00 LST. The highest hourly precipitation frequency occurs at 18:00 LST, occupying about 12% of the total and the maximum value of precipitation intensity occurs at 15:00 LST, about 8 mm hr -1. Such a result implies precipitation occurs more frequently later in the day under high aerosol loading environments, and the precipitation intensity is 1-4 mm hr -1 greater than clean conditions. In addition, after examining all the afternoon precipitation cases, the characteristic of afternoon precipitation tends to be greater in intensity under polluted conditions. The results from MODIS/Aqua cloud properties show that when comparing with clean environments, in the polluted environments, cloud effective radius decreased by 0.99 μm, cloud top temperature decreased by 0.91 K, while cloud fraction increased by 0.09, cloud optical depth increased by 1.49, and cloud water path increased by 12.97 g m-2.
Finally, based on the observation analysis results, we proposed a plausible mechanism for aerosol effects on diurnal variations of precipitation. Aerosols originating from central plain of Taiwan in summer will modify cloud droplets with smaller effective radius and then reduce the efficiency of the collision-coalescence process in clouds. As a result, it will change the cloud lifetime and then suppress the occurrence of morning precipitation, which allows more cloud water to be accumulated in the cloud. This lead to more frequent and high intensity precipitation under an unstable environment in the afternoon. In this study, we integrate surface observations, satellite measurement and reanalysis data to conduct the analysis, and obtain a clear statistical relationship between aerosols and diurnal variations of summertime precipitation. Numerical model simulations are needed to examine the detailed mechanisms in our future study. In order to better understand the microphysics and dynamic processes in clouds and quantify the aerosol effects. These preliminary results can be applied to field deployment over central plain of Taiwan and to strategy planning in the observation of ACPIs in the future.
關鍵字(中) ★ 氣膠微物理效應
★ 降水日變化
關鍵字(英) ★ Aerosol microphysical effect
★ Diurnal variation of precipitation
論文目次 摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xi
一、 前言 1
1-1 研究動機 1
1-2 研究目的 2
二、 文獻回顧 4
2-1 氣膠輻射與微物理效應 4
2-2 氣膠-雲-降水交互作用之研究 8
2-3 臺灣氣膠與降水相關研究 10
三、 研究方法 12
3-1 地面觀測資料 12
3-1-1 環保署空氣品質監測網 13
3-1-2 AERONET全球氣膠輻射監測網 13
3-2 衛星與再分析資料 14
3-2-1 MODIS氣膠與雲觀測資料 15
3-2-2 GPM降水觀測資料 16
3-2-3 ERA5再分析資料 17
3-3 研究範圍與選用時間 20
3-4 降水日變化之分析 24
3-4-1 綜觀天氣系統之濾除 24
3-4-2 乾淨與污染條件之定義 25
3-4-3 降水日變化之分析方法 27
3-5 雲資料之分析方法 34
四、 結果與討論 35
4-1 地面觀測與衛星長期資料分析 35
4-1-1 氣膠、降水與雲參數之氣候特性分析 35
4-1-2 氣膠與氣象參數之逐時日變化 38
4-2 乾淨與污染環境條件下之氣象場特徵 45
4-3 氣膠對降水日變化之影響 54
4-3-1不同污染條件下之降水變化 54
4-3-2 限制氣象場條件下之分析探討 55
4-3-3 氣膠對降水空間分布之影響 58
4-4 氣膠對雲特性之影響 67
五、 總結與未來展望 72
5-1 總結 72
5-2 未來展望 74
參考文獻 76
參考文獻 行政院環境保護署,2020:空氣品質監測網背景說明。https://airtw.epa.gov.tw/CHT/EnvMonitoring/Central/Background_Intro.aspx (取用日期:2020.06)。
行政院環境保護署,2020:空氣品質監測網監測儀器。https://airtw.epa.gov.tw/CHT/EnvMonitoring/Central/Tools.aspx (取用日期:2020.06)。
陳慶昌,嚴明鉦,王世宇,2007:台灣與東亞之夏季季風降雨變化。大氣科學,36(4),305-352。
Albrecht, B. A. (1989), Aerosols, cloud microphysics, and fractional cloudiness, Science, 245(4923), 1227-1230.
Altaratz, O., I. Koren, L. Remer, and E. Hirsch (2014), Cloud invigoration by aerosols—Coupling between microphysics and dynamics, Atmospheric Research, 140, 38-60.
Andreae, M. O., D. Rosenfeld, P. Artaxo, A. Costa, G. Frank, K. Longo, and M. A. F. d. Silva-Dias (2004), Smoking rain clouds over the Amazon, Science, 303(5662), 1337-1342.
Avey, L., T. Garrett, and A. Stohl (2007), Evaluation of the aerosol indirect effect using satellite, tracer transport model, and aircraft data from the International Consortium for Atmospheric Research on Transport and Transformation, Journal of Geophysical Research: Atmospheres, 112(D10).
Bell, T. L., D. Rosenfeld, K. M. Kim, J. M. Yoo, M. I. Lee, and M. Hahnenberger (2008), Midweek increase in US summer rain and storm heights suggests air pollution invigorates rainstorms, Journal of Geophysical Research: Atmospheres, 113(D2).
Chen, C.-S., and Y.-L. Chen (2003), The rainfall characteristics of Taiwan, Monthly Weather Review, 131(7), 1323-1341.
Chen, F., and X. Li (2016), Evaluation of IMERG and TRMM 3B43 Monthly Precipitation Products over Mainland China, Remote Sensing, 8(6), 472.
Chen, T.-C., M.-C. Yen, J.-C. Hsieh, and R. W. Arritt (1999), Diurnal and seasonal variations of the rainfall measured by the automatic rainfall and meteorological telemetry system in Taiwan, Bulletin of the American Meteorological Society, 80(11), 2299-2312.
Chen, T.-C., M.-C. Yen, J.-D. Tsay, C.-C. Liao, and E. S. Takle (2014), Impact of Afternoon Thunderstorms on the Land–Sea Breeze in the Taipei Basin during Summer: An Experiment, Journal of Applied Meteorology and Climatology, 53(7), 1714-1738.
Cheng, F.-Y., and C.-H. Hsu (2019), Long-term variations in PM 2.5 concentrations under changing meteorological conditions in Taiwan, Scientific reports, 9(1), 6635.
Fan, J., D. Rosenfeld, Y. Yang, C. Zhao, L. R. Leung, and Z. Li (2015), Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China, Geophysical Research Letters, 42(14), 6066-6075.
Fan, J., Y. Wang, D. Rosenfeld, and X. Liu (2016), Review of aerosol–cloud interactions: Mechanisms, significance, and challenges, Journal of the Atmospheric Sciences, 73(11), 4221-4252.
Fan, J., T. Yuan, J. M. Comstock, S. Ghan, A. Khain, L. R. Leung, Z. Li, V. J. Martins, and M. Ovchinnikov (2009), Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds, Journal of Geophysical Research: Atmospheres, 114(D22).
Feingold, G., W. L. Eberhard, D. E. Veron, and M. Previdi (2003), First measurements of the Twomey indirect effect using ground‐based remote sensors, Geophysical Research Letters, 30(6).
Gunn, R., and B. Phillips (1957), An experimental investigation of the effect of air pollution on the initiation of rain, Journal of Meteorology, 14(3), 272-280.
Guo, J., M. Deng, S. S. Lee, F. Wang, Z. Li, P. Zhai, H. Liu, W. Lv, W. Yao, and X. J. J. o. G. R. A. Li (2016), Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part I: Observational analyses, Journal of Geophysical Research: Atmospheres, 121(11), 6472-6488.
Guo, J., P. Zhai, L. Wu, M. Cribb, Z. Li, Z. Ma, F. Wang, D. Chu, P. Wang, and J. Zhang (2013), Diurnal variation and the influential factors of precipitation from surface and satellite measurements in Tibet, International journal of climatology, 34(9), 2940-2956.
Guo, J. P., et al. (2018), Aerosol-induced changes in the vertical structure of precipitation: a perspective of TRMM precipitation radar, Atmospheric Chemistry & Physics, 18(18), 13329-13343.
Harikishan, G., B. Padmakumari, R. S. Maheskumar, G. Pandithurai, and Q. L. Min (2016), Aerosol indirect effects from ground-based retrievals over the rain shadow region in Indian subcontinent, Journal of Geophysical Research: Atmospheres, 121(5), 2369-2382.
He, Q., C. Li, X. Tang, H. Li, F. Geng, and Y. Wu (2010), Validation of MODIS derived aerosol optical depth over the Yangtze River Delta in China, Remote Sensing of Environment, 114(8), 1649-1661.
Hersbach, H., B. Bell, P. Berrisford, A. Horányi, J. M. Sabater, J. Nicolas, R. Radu, D. Schepers, A. Simmons, and C. Soci (2019), Global reanalysis: goodbye ERA-Interim, hello ERA5, ECMWF Newsl, 159, 17-24.
Holben, B., D. Tanre, A. Smirnov, T. Eck, I. Slutsker, N. Abuhassan, W. Newcomb, J. Schafer, B. Chatenet, and F. Lavenu (2001), An emerging ground‐based aerosol climatology: Aerosol optical depth from AERONET, Journal of Geophysical Research: Atmospheres, 106(D11), 12067-12097.
Holben, B. N., T. F. Eck, I. Slutsker, D. Tanre, J. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, and T. Nakajima (1998), AERONET—A federated instrument network and data archive for aerosol characterization, Remote sensing of environment, 66(1), 1-16.
Hsu, C.-H., and F.-Y. Cheng (2019), Synoptic Weather Patterns and Associated Air Pollution in Taiwan, Aerosol and Air Quality Research, 19(5), 1139-1151.
Huang, J., T. Wang, W. Wang, Z. Li, and H. Yan (2014), Climate effects of dust aerosols over East Asian arid and semiarid regions, Journal of Geophysical Research: Atmospheres, 119(19), 11,398-11,416.
Huang, K., J. S. Fu, N. H. Lin, S. H. Wang, X. Dong, and G. Wang (2019), Superposition of Gobi Dust and Southeast Asian Biomass Burning: The Effect of Multisource Long‐Range Transport on Aerosol Optical Properties and Regional Meteorology Modification, Journal of Geophysical Research: Atmospheres, 124(16), 9464-9483.
Huang, W.-R., Y.-H. Chang, and P.-Y. Liu (2018), Assessment of IMERG precipitation over Taiwan at multiple timescales, Atmospheric Research, 214, 239-249.
Huang, W.-R., and S.-Y. Wang (2013), Impact of land–sea breezes at different scales on the diurnal rainfall in Taiwan, Climate Dynamics, 43(7-8), 1951-1963.
Huang, W. R., H. H. Hsu, S. Y. Wang, and J. P. Chen (2015), Impact of atmospheric changes on the low‐frequency variations of convective afternoon rainfall activity over Taiwan, Journal of Geophysical Research: Atmospheres, 120(17), 8743-8758.
Huffman, G.J., E.F. Stocker, D.T. Bolvin, E.J. Nelkin, Jackson Tan (2019), GPM IMERG Early Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06, Greenbelt, MD, USA.
Jiang, J. H., H. Su, M. R. Schoeberl, S. T. Massie, P. Colarco, S. Platnick, and N. J. Livesey (2008), Clean and polluted clouds: Relationships among pollution, ice clouds, and precipitation in South America, Geophysical Research Letters, 35(14).
Khain, A., D. Rosenfeld, and A. Pokrovsky (2005), Aerosol impact on the dynamics and microphysics of deep convective clouds, Quarterly Journal of the Royal Meteorological Society, 131(611), 2639-2663.
Koren, I., O. Altaratz, L. A. Remer, G. Feingold, J. V. Martins, and R. H. J. N. G. Heiblum (2012), Aerosol-induced intensification of rain from the tropics to the mid-latitudes, Nature, 5(2), 118.
Koren, I., G. Feingold, and L. A. Remer (2010), The invigoration of deep convective clouds over the Atlantic: aerosol effect, meteorology or retrieval artifact?, Atmospheric Chemistry & Physics, 10(18), 8855-8872.
Koren, I., Y. J. Kaufman, L. A. Remer, and J. V. Martins (2004), Measurement of the effect of Amazon smoke on inhibition of cloud formation, Science, 303(5662), 1342-1345.
Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich (2005), Aerosol invigoration and restructuring of Atlantic convective clouds, Geophysical Research Letters, 32(14).
Kotarba, A. Z. (2009), A comparison of MODIS-derived cloud amount with visual surface observations, Atmospheric Research, 92(4), 522-530.
Lebo, Z. J., and J. H. Seinfeld (2011), Theoretical basis for convective invigoration due to increased aerosol concentration, Atmospheric Chemistry & Physics, 11(11), 5407-5429.
Lee, S. S., J. Guo, and Z. Li (2016), Delaying precipitation by air pollution over the Pearl River Delta: 2. Model simulations, Journal of Geophysical Research: Atmospheres, 121(19), 11,739-11,760.
Li, Z., F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. J. N. G. Ding (2011), Long-term impacts of aerosols on the vertical development of clouds and precipitation, Nature, 4(12), 888.
Li, Z., et al. (2019), East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EAST‐AIRCPC), Journal of Geophysical Research: Atmospheres, 124(23), 13026-13054.
Lin, J. C., T. Matsui, R. A. Pielke, and C. Kummerow (2006), Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: a satellite-based empirical study, Journal of Geophysical Research, 111(D19).
Liu, Y. Q., et al. (2017), Analysis of aerosol effects on warm clouds over the Yangtze River Delta from multi-sensor satellite observations, Atmospheric Chemistry & Physics, 17(9), 5623-5641.
Manoj, M. G., P. C. S. Devara, S. Joseph, and A. K. Sahai (2012), Aerosol indirect effect during the aberrant Indian Summer Monsoon breaks of 2009, Atmospheric Environment, 60, 153-163.
Martins, J. V., A. Marshak, L. A. Remer, D. Rosenfeld, Y. J. Kaufman, R. Fernandez-Borda, I. Koren, A. L. Correia, V. Zubko, and P. Artaxo (2011), Remote sensing the vertical profile of cloud droplet effective radius, thermodynamic phase, and temperature, Atmospheric Chemistry & Physics, 11(18), 9485-9501.
Meskhidze, N., L. Remer, S. Platnick, R. Negrón Juárez, A. Lichtenberger, and A. Aiyyer (2009), Exploring the differences in cloud properties observed by the Terra and Aqua MODIS Sensors, Atmospheric Chemistry & Physics, 9(10), 3461-3475.
Min, Q.-L., R. Li, B. Lin, E. Joseph, S. Wang, Y. Hu, V. Morris, and F. Chang (2009), Evidence of mineral dust altering cloud microphysics and precipitation, Atmospheric Chemistry & Physics, 9(9), 3223-3231.
Pincus, R., and M. B. Baker (1994), Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer, Nature, 372(6503), 250-252.
Rosenfeld, D. (1999), TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall, Geophysical Research Letters, 26(20), 3105-3108.
Rosenfeld, D., M. O. Andreae, A. Asmi, M. Chin, G. de Leeuw, D. P. Donovan, R. Kahn, S. Kinne, N. Kivekäs, and M. Kulmala (2014), Global observations of aerosol‐cloud‐precipitation‐climate interactions, Reviews of Geophysics, 52(4), 750-808.
Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O′dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. J. s. Andreae (2008), Flood or drought: How do aerosols affect precipitation?, science, 321(5894), 1309-1313.
Rosenfeld, D., Y. Rudich, and R. Lahav (2001), Desert dust suppressing precipitation: A possible desertification feedback loop, Proceedings of the National Academy of Sciences, 98(11), 5975-5980.
Sarangi, C., S. N. Tripathi, V. P. Kanawade, I. Koren, and D. S. Pai (2017), Investigation of the aerosol–cloud–rainfall association over the Indian summer monsoon region, Atmospheric Chemistry & Physics, 17(8), 5185-5204.
Schwartz, S. E., and C. M. Benkovitz (2002), Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling, Proceedings of the National Academy of Sciences, 99(4), 1784-1789.
Sena, E. T., A. McComiskey, and G. Feingold (2016), A long-term study of aerosol–cloud interactions and their radiative effect at the Southern Great Plains using ground-based measurements, Atmospheric Chemistry & Physics, 16(17), 11301-11318.
Squires, P. (1958), The microstructure and colloidal stability of warm clouds: Part I—The relation between structure and stability, Tellus, 10(2), 256-261.
Stevens, B., and G. Feingold (2009), Untangling aerosol effects on clouds and precipitation in a buffered system, Nature, 461(7264), 607.
Su, S.-H., J.-L. Chu, T.-S. Yo, and L.-Y. Lin (2018), Identification of synoptic weather types over Taiwan area with multiple classifiers, Atmospheric Science Letters, 19(12).
Tao, W. K., J. P. Chen, Z. Li, C. Wang, and C. Zhang (2012), Impact of aerosols on convective clouds and precipitation, Reviews of Geophysics, 50(2).
Tu, J.-Y., and C. Chou (2013), Changes in precipitation frequency and intensity in the vicinity of Taiwan: typhoon versus non-typhoon events, Environmental Research Letters, 8(1), 014023.
Twomey, S. (1977), The influence of pollution on the shortwave albedo of clouds, Journal of the atmospheric sciences, 34(7), 1149-1152.
Wall, C., E. Zipser, and C. Liu (2014), An Investigation of the Aerosol Indirect Effect on Convective Intensity Using Satellite Observations, Journal of the Atmospheric Sciences, 71(1), 430-447.
Wang, C., S. Platnick, Z. Zhang, K. Meyer, and P. Yang (2016), Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations. Part I: Forward model, error analysis, and information content, Journal of Geophysical Research: Atmospheres, 121(10), 5809-5826.
Wang, Q., Z. Li, J. Guo, C. Zhao, and M. Cribb (2018), The climate impact of aerosols on the lightning flash rate: is it detectable from long-term measurements?, Atmospheric Chemistry & Physics, 18(17).
Wang, S.-Y., and T.-C. Chen (2008), Measuring East Asian Summer Monsoon Rainfall Contributions by Different Weather Systems over Taiwan, Journal of Applied Meteorology and Climatology, 47(7), 2068-2080.
Wetzel, M. A., and L. L. Stowe (1999), Satellite‐observed patterns in stratus microphysics, aerosol optical thickness, and shortwave radiative forcing, Journal of Geophysical Research: Atmospheres, 104(D24), 31287-31299.
Wu, C.-H., I. C. Tsai, P.-C. Tsai, and Y.-S. Tung (2019), Large–scale seasonal control of air quality in Taiwan, Atmospheric Environment, 214, 116868.
Xu, R., F. Tian, L. Yang, H. Hu, H. Lu, and A. Hou (2017), Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network, Journal of Geophysical Research: Atmospheres, 122(2), 910-924.
Yang, Y., J. Fan, L. R. Leung, C. Zhao, Z. Li, and D. J. J. o. t. A. S. Rosenfeld (2016), Mechanisms contributing to suppressed precipitation in Mt. Hua of central China. Part I: Mountain valley circulation, Journal of the Atmospheric Sciences, 73(3), 1351-1366.
Yin, S., D. Chen, and Y. Xie (2009), Diurnal variations of precipitation during the warm season over China, International Journal of Climatology, 29(8), 1154-1170.
Zhou, S., J. Yang, W.-C. Wang, D. Gong, P. Shi, and M. Gao (2018), Shift of daily rainfall peaks over the Beijing-Tianjin-Hebei region: An indication of pollutant effects?, International Journal of Climatology, 38(13), 5010-5019.
Zhou, S., J. Yang, W.-C. Wang, C. Zhao, D. Gong, and P. Shi (2020), An observational study of the effects of aerosols on diurnal variation of heavy rainfall and associated clouds over Beijing-Tianjin-Hebei, Atmospheric Chemistry & Physics, 20(9), 5211-5229.
指導教授 王聖翔(Sheng-Hsiang Wang) 審核日期 2020-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明