博碩士論文 107622004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:13.58.89.39
姓名 陳冠宇(Guan-Yu Chen)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 微地動場址修正之地震動預估研究
(Ground Motion Prediction by using Site Correction of Microtremor)
相關論文
★ 利用井下地震儀陣列探討單站頻譜比法之應用★ 高屏地區場址效應之探討
★ 以地震儀陣列及基因演算法推估近地表剪力波波速★ 臺灣中部地區強地動波形模擬
★ 利用接收函數法推估蘭陽平原淺層速度構造★ 蘭陽平原場址效應及淺層S波速度構造
★ 探討不同地質區強震站之淺層S波速度構造★ 震源破裂過程及地表強地動特性之陣列分析研究
★ 利用微地動探討桃竹苗地區之場址效應★ 利用微地動量測探討台灣中部地區之場址效應
★ 利用有限斷層法探討台北盆地之場址效應★ 利用微地動量測探討台北盆地之場址效應
★ 以恆春地震探討高屏地區之場址效應★ 利用隨機式震源模型探討蘭陽平原之場址效應
★ 利用時頻分析技術檢視土壤非線性反應★ 台灣潛勢地震之發生機率評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以地震資料豐富且地動場址特性已清楚之宜蘭平原作為測試場,利用微地動單站頻譜比之比值(RHVSR)作為地動波形之場址修正因子,藉由強震站實測波形資料進行場址效應修正,進而推估平原各微地動測點之地動波形,並探討可能影響此地動預估方法之各項因素。經測試之結果顯示,測站距離在18公里以內時,對地震動預估之影響不明顯,但位於地質邊界之測站可能受地下複雜之地質構造形貌影響,其誤差值明顯高於平原之測站。另外,根據震源距離測試之結果顯示對預估之影響不大。接著根據測試結果建立微地動測點與強震站間的匹配準則,並對所有微地動測點進行歷史地震之地動預估。結果顯示佈設在平原的微地動測點可反應平原之場址特性,相較於強震站,高密度之微地動測點能夠反應更細緻之場址變化,並呈現高精度之地動分布。根據地震主頻與對應頻率之場址放大分布之分析結果發現,不同地震之震波特性會導致震波進入平原各處之頻率內涵有所差異,預估之地動分布與場址放大分布相當一致,顯示本研究所預估之地震動具一定的可信度。針對不同歷史地震模擬結果進行觀察,發現不同位置之震源確實會影響平原各處對地震動之反應。對於震源位置相似之地震事件,平原內所表現的地震動分布相當類似。本研究透過對場址相依地動預估分析程序之測試與實際應用,顯示此方法確實可反應平原內各地區之場址特性,並可獲得可信之高精度地震動分布。
摘要(英) This study proposes a method by using microtremor H/V spectral ratio (HVSR) to correct the site effect and predict the ground motion of nearby sites. The ratio of HVSR ( RHVSR) can be seen as a correction factor to predict the ground motion of the sites around a strong-motion station. Here, we selected the Ilan plain of Taiwan as a test site, and evaluate the error and stability of this method. The results show that there is no significant effect of distances on the prediction of ground motion if the distance between two sites less than 18 km. But, the stations located at the geological boundary may be affected by the topography of the geological structure, and the error is obviously higher than that of the plain station. In addition, the test shows that the source distance has minor effect on the ground motion prediction. Based on the results of the test for our method, the matching rules between microtremor sites and strong ground motion stations are established, and the scenarios of several historical events in the Ilan plain were simulated. The scenarios proved that the microtremor sites distributed in the plain reflect the site characteristics well. Compared with the original observations of strong motion stations, the simulations of high-density microtremor sites can react to complex site characteristics and present high-accuracy ground motion distribution. It is found that the seismic characteristics of different earthquakes will lead to some differences in frequency contents of seismic waves entering the plain because of the variation of site amplification. The predicted ground motion distribution is consistent with the site amplification distribution, which shows that the predicted ground motion in this study has certain credibility. Based on the simulations of historical events, it is also found that the hypocenter in different locations will affect the response of ground motion in different places in the plain. Through the test and application of the ground motion prediction by using site correction of microtremor, this study shows that the method can obtain reliable high-accuracy ground motion distribution that reflect the site characteristics sufficiently.
關鍵字(中) ★ 單站頻譜比
★ 地震動預估
★ 微地動
★ 場址效應
關鍵字(英)
論文目次 摘要................................................... i
ABSTRACT.............................................. ii
謝誌.................................................. iv
目錄................................................... v
圖目錄............................................... vii
表目錄............................................... xii
第一章 緒論............................................ 1
  1.1 研究動機與目的.................................. 1
  1.2 文獻回顧....................................... 3
  1.3 本文內容....................................... 5
第二章 研究區域......................................... 9
  2.1 宜蘭平原之地形與地體構造......................... 9
  2.2 宜蘭平原地質概述............................... 10
  2.3 場址特性與速度構造分析.......................... 12
  2.4 其它相關研究................................... 14
第三章 研究原理與方法.................................. 24
  3.1 理論基礎...................................... 24
    3.1.1 時頻關係與傅立葉轉換...................... 24
    3.1.2 雙站頻譜比法............................. 25
    3.1.3 單站頻譜比法..............................26
  3.2 場址相依地震動預估原理.......................... 27
  3.3 資料處理...................................... 29
    3.3.1 資料來源................................. 29
    3.3.2 研究流程................................. 29
    3.3.3 測站間距之振幅修正........................ 30
第四章 預估結果與適用性評估............................. 42
  4.1 測站間距...................................... 42
  4.2 場址差異...................................... 44
  4.3 震源距離...................................... 46
  4.4 強震站與微地動測點之匹配........................ 46
  4.5 測站分布情境模擬............................... 48
第五章 歷史事件模擬與討論............................... 68
  5.1 歷史事件模擬結果............................... 68
  5.2 地動預估結果與場址特性之相關性................... 69
  5.3 震源差異之影響................................. 70
    5.3.1 宜花近海................................. 71
    5.3.2 東南外海................................. 72
    5.3.3 平原以南................................. 72
    5.3.4 平原地區................................. 73
第六章 結論........................................... 86
參考文獻 ............................................. 88
附錄A 微地動測點資訊................................... 93
附錄B 宜蘭平原TSMIP強震站之微地動與地震動HVSR........... 107
附錄C 各微地動測點與對應之強震站及權重分配............... 115
附錄D TSMIP強震站實測18筆歷史事件之地震動分布圖與微地動場址修正所預估之地震動分布圖................................. 142
參考文獻 Anderson, J. G., P. Bodin, J. N. Brune, J. Prince, S. K. Singh, R. Quaas, and M. Onate, 1986. Strong ground motion from the Michoacan, Mexico, earthquake. Science, 233, 4768, 1043-1049.
Angelier, J., T. Y. Chang, J. C. Hu, C. P. Chang, L. Siame, J. C. Lee, B. Deffontaines, H. T. Chu, and C. Y. Lu, 2009. Does extrusion occur at both tips of the Taiwan collision belt? Insights from active deformation studies in the Ilan Plain and Pingtung Plain regions. Tectonophysics, 466, 3-4, 356-376.
Borcherdt, R. D, 1970. Effects of local geology on ground motion near San Francisco Bay. Bull. Seismol. Soc. Am., 60, 1, 29-61.
Chen C. T, C. M. Lin, C. H. Kuo, K. L. Wen, and J. Y. Huang, 2019. Shallow shear wave velocity structure in Taiwan inferred from Microtremor analysis. International Conference in Commemoration of 20th Anniversary of the 1999 Chi-Chi Earthquake, Taipei, Taiwan, September 15-19, 2019.
Field, E. H., S. E. Hough, and K. H. Jacob, 1990. Using microtremors to assess potential earthquake site response: a case study in Flushing Meadows, New York City. Bull. Seismol. Soc. Am., 80, 6A, 1456-1480.
Field, E., and K. Jacob, 1993. The theoretical response of sedimentary layers to ambient seismic noise. Geophys. Res. Lett., 20, 24, 2925-2928.
Field, E. H., and K. H. Jacob, 1995. A comparison and test of various site-response estimation techniques, including three that are not reference-site dependent. Bull. Seismol. Soc. Am., 85, 4, 1127-1143.
Hata, Y., A. Nozu, and K. Ichii, 2011. A practical method to estimate strong ground motions after an earthquake, based on site amplification and phase characteristics. Bull. Seismol. Soc. Am., 101, 2, 688-700.
Hata, Y., M. Yabe, A. Kasai, H. Matsuzaki, Y. Takahashi, and M. Akiyama, 2016. Ground motion estimation for the elevated bridges of the Kyushu Shinkansen derailment caused by the foreshock of the 2016 Kumamoto earthquake based on the site-effect substitution method. Earth, Planets and Space, 68, 1, 199.
Hou, C. S., J. C. Hu, K. E. Ching, Y. G. Chen, C. L. Chen, L. W. Cheng, C. L. Tang, S. H. Huang, amd C. H. Lo, 2009. The crustal deformation of the Ilan Plain acted as a westernmost extension of the Okinawa Trough. Tectonophysics, 466, 3-4, 344-355.
Huang, H. C., and T. L. Teng, 1999. An evaluation on H/V ratio vs. spectral ratio for site-response estimation using the 1994 Northridge earthquake sequences. Pure Appl. Geophys., 156, 4, 631-649.
Huang, H. C., 2002. Characteristics of earthquake ground motions and the H/V of microtremors in the southwestern part of Taiwan. Earthq. Eng. Struct. Dyn., 31, 10, 1815-1829.
Huang, H. C., Y. T. Yang, and H. C. Chiu, 2002. Site response evaluation using the H/V ratio at the Yan-Liau station in Hualien, Taiwan. Pure Appl. Geophys., 159, 11-12, 2715-2731.
Jean, W. Y., Y. W. Chang, K. L. Wen, and C. H. Loh, 2006. Early estimation of seismic hazard for strong earthquakes in Taiwan. Nat. Hazards, 37, 1-2, 39-53.
Kuo, C. H., K. L. Wen, H. H. Hsieh, C. M. Lin, T. M. Chang, and K. W. Kuo, 2012. Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT. Eng. Geol., 129-130, 68-75.
Kuo, C. H., K. L. Wen, C. M. Lin, S. Wen, and J. Y. Huang, 2015. Investigating near surface S-wave velocity properties using ambient noise in Southwestern Taiwan. Terr. Atmospheric Ocean. Sci., 26, 2, 205.
Lermo, J., and F. J. Chávez-García, 1993. Site effect evaluation using spectral ratios with only one station. Bull. Seismol. Soc. Am., 83, 5, 1574-1594.
Maruyama, Y., F. Yamazaki, and T. Hamada, 2000. Microtremor measurements for the estimation of seismic motion along expressways. Proceedings of the 6th International Conference of Seismic Zonation, Palm Springs, California, USA, 1361-1366.
Nakamura, Y., 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30, 1, 25-33.
Nakano, M., N. Fukwua, and J. Tobita, 2000. Regional variation of ground motion in Nobi Plain. In Japan, based on seismic records, microtremor and geological data. An international conference on Geotechnical & Geological Engineering, GeoEng2000.
Sokolov, V., 2000. Spectral parameters of ground motion in different regions: comparison of empirical models. Soil Dyn. Earthq. Eng., 19, 3, 173-181.
Tong, L. T., S. Ouyang, T. R. Guo, C. R. Lee, K. H. Hu, C. L. Lee, and C. J. Wang, 2008. Insight into the geothermal structure in Chingshui, Ilan, Taiwan. Terr. Atmospheric Ocean. Sci., 19, 4.
Tsai, K. C., C. P. Hsiao, and M. Bruneau, 2000. Overview of building damages in 921 Chi-Chi earthquake. Earthq. Eng. Eng. Seismol., 2, 1, 93-108.
Wen, K. L., and H. Y. Peng, 1998. Site effect analysis in the Taipei basin: Results from TSMIP network data. Terr. Atmospheric Ocean. Sci., 9, 4, 691-704.
Wen, K. L., C. M. Lin, H. J. Chiang, C. H. Kuo, Y. C. Huang, and H. C. Pu, 2008. Effect of surface geology on ground motions: The case of station TAP056-Chutzuhu site. Terr. Atmospheric Ocean. Sci., 19, 5, 451-462.
Yu, S. B., and Y. B. Tsai, 1979. Geomagnetic anomalies of the Ilan plain, Taiwan. Petrol. Geol. Taiwan, 16, 19-27.
方熙蒂,2016。以微地動分析宜蘭盆地S波速度構造,國立中央大學地球物理研究所碩士論文,中壢,共161頁。
史大勇,2006。探討蘭陽地區之場址特性,國立中正大學應用地球物理研究所碩士論文,嘉義,共131頁。
江新村,1976。宜蘭平原之震測,礦業技術,第14卷,第6期,215-221頁。
林哲民,2003。利用接收函數法推估蘭陽平原淺層速度構造,國立中央大學地球物理研究所碩士論文,中壢,共159頁。
林啟文、林偉雄,1995。三星圖幅及說明書。五萬分之一台灣地質圖及說明書,第15號,經濟部中央地質調查所出版,共56頁。
林啟文、高銘健,2009。蘇澳圖幅及說明書。五萬分之一台灣地質圖及說明書,第16號,第二版,經濟部中央地質調查所出版,共59頁。
林朝宗,2000。新店圖幅及說明書。五萬分之一台灣地質圖及說明書,第9號,經濟部中央地質調查所出版,共77頁。
張峻瑋,2010。利用反射震測探討宜蘭平原南部之基盤深度及斷層分佈,國立中央大學地球物理研究所碩士論文,中壢,共104頁。
黃有志,2003。蘭陽平原場址效應及淺層S波速度構造,國立中央大學地球物理研究所碩士論文,中壢,共257頁。
黃雋彥,2009。利用微地動量測探討台灣地區之場址效應,國立中央大學地球物理研究所碩士論文,中壢,共240頁。
黃鑑水、何信昌,1989。頭城圖幅及說明書。五萬分之一台灣地質圖及說明書,第10號,經濟部中央地質調查所出版,共29頁。
詹新甫,1976。宜蘭地區第三紀之地質,礦業技術,第14卷,第7期,252-257頁。
謝宏灝,2001。利用井下地震儀陣列探討單站頻譜比法之應用,國立中央大學地球物理研究所碩士論文,中壢,共99頁。
經濟部中央地質調查所,2016。山崩與地滑敏感區劃定計畫書L0016宜蘭縣。
指導教授 溫國樑 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明