博碩士論文 107622603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.16.83.150
姓名 韓怡娜(Haiyina Hasbia Amania)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 運用大地電磁法探討北部屏東平原地下構造
(Imaging the Subsurface Structures with the Magnetotelluric Method in the northern Pingtung Plain of Taiwan)
相關論文
★ 宜蘭三星清水地區現地應力與斷層再活動分析★ 地面-井下地電阻影像法之空間解析度與成像能力分析
★ 運用地電阻影像法估算非受壓含水層之水頭及比出水率: 位於台灣中部,台中-南投地盆地沿烏溪河之研究案例★ 應用二維地電阻法推估名竹盆地淺層含水層水位變化及比出水率
★ 運用二維地電阻影像法推估屏東平原扇頂地區非拘限含水層在乾濕季之地下水位變化及比出水率★ 辨識大地地磁法現地施測之噪訊:以台灣花蓮地區為案例
★ 應用二維地電阻法推估蘭陽平原扇頂地區淺層地下水位面於乾溼季的變化量及比出水率★ 地電阻剖面影像法之不確定性評估
★ 時間域電磁波方法在雲林地區濁水溪沖積扇中下游水文地質結構測勘之應用★ 運用機器學習進行地球物理數據分析:地電阻與透地雷達方法中的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的為應用大地電磁法探討台灣西南部屏東平原的地下構造。屏東平原位於馬尼拉俯衝帶與台灣碰撞帶之間的過渡帶,也是台灣最大的地下水補給區之一,由於構造活動和過多的地下水抽運而面臨快速沉降。鑽井資料顯示約500公尺的全新世-更新世厚沉積物覆蓋了大部分的平原淺層,然而稀疏的鑽井分佈對於區域地質了解有限。在本研究中,我們從屏東平原北部的10個站點收集了大地電磁數據,並應用一個遠端參考站作為校正,選擇晚上4個小時為週期的資料,以減少人為干擾影響,研究探測深度可達4公里深,可分成南北向和東西向兩個剖面成像。根據一維反演結果,我們發現未固結的沉積物與500公尺深處的基底接觸之間有一個清晰的邊界。上層的電阻率(<50Ωm)為沖積層,在500公尺深與中新世基底岩石接觸,其電阻率達到數千Ω-m。在此區域我們沒有發現泥火山構造或是河流,然而我們發現電阻率異常反應出類似斷層和構造。因此,可認為影響台灣西南部屏東平原河道方向的主要因素是地形效應而不是地質構造。
摘要(英) The use of Magnetotelluric method is implemented in attempt to image the subsurface structure in Pingtung Plain area of Southwestern Taiwan. The Plain is in the transition zone between the Manila subduction and Taiwan collision belt, and is considered as one of the country largest groundwater recharge area and is faced to rapid subsidence due to both tectonic activities along with excessive ground water pumping. Thick Holocene-Pleistocene sediments of less than 500m are covering most of the Plain surface. The sparse borehole data in the area provide limited geological information for the subsurface structure. In this study, we collected the Magnetotelluric data from 10 stations in the northern Pingtung Plain to explore to the depth of approximately less than 4km, divided into 2 profiles that is trending North-South and West-East. We also utilized 1 remote station, and selected 4-hours midnight timepiece to reduce the manmade artifacts and noise effects. From 1D inversion result, we obtained a sharp boundary between the unconsolidated sediments and the basement contact at 500m deep. The topmost conductive value belongs to the alluvium layer (<50Ωm) where it contacted the Miocene basement rock of resistivity reaching thousands Ω-m in the depth of approximately 500m. Most features observed in the study area shows a fault-like features and an anomalous volumetric body, thus hardly correlated with the surrounding mud diapir and volcanoes. Also, the topographical effect of SW Taiwan is assumed to be the dominant factor affecting the river course orientation rather than geological structure.
關鍵字(中) ★ 大地電磁法
★ 屏東平原
★ 近地表研究
關鍵字(英) ★ Magnetotelluric
★ Pingtung Plain
★ Subsurface Study
論文目次 ABSTRACT i
摘要 ii
TABLE OF CONTENTS iii
LIST OF FIGURES iv
CHAPTER I INTRODUCTION 1
1.1 Introduction 1
1.2 Aim of Study 2
CHAPTER II SURVEY DESIGN 5
2.1 Geological Setting of the Research Area 5
2.2 Instruments and Field Procedures 11
CHAPTER III METHODOLOGY 16
3.1 Magnetotelluric Method 16
3.2 Remote Reference Method 23
3.3 Data Processing 24
3.4.1 Selecting, Viewing, and Converting Time series data 27
3.4.2 Data processing procedures 29
3.4.3 Inversion 34
CHAPTER IV RESULT 38
4.1 Pre-inversion results from data processing 38
4.2 1D Inversion 44
4.3 2D & 3D inversion 46
CHAPTER V DISCUSSION 52
5.2 Model Interpretation 52
CHAPTER VI CONCLUSIONS, LIMITATION AND SUGGESTIONS FOR FUTURE RESEARCH 58
6.1 Magnetotelluric imaging and data processing conclusions 58
6.2 Limitations and Suggestions for Future Research 58
REFERENCES 60
APPENDIX 64
參考文獻 Angelier, J., Chang, T.-Y., Hu, J.-C., Chang, C.-P., Siame, L., Lee, J.-C., Deffontaines, B., Chu, H.-T., Lu, C.-Y., 2009. Does extrusion occur at both tips of the Taiwan collision belt? Insights from active deformation studies in the Ilan Plain and Pingtung Plain regions. Tectonophysics 466, 356–376. https://doi.org/10.1016/j.tecto.2007.11.015
Arnason, K., 2015. The Static Shift Problem in MT Soundings. Proc. World Geotherm. Congr. 2015 12.
Berdichevsky, M.N., 1999. Marginal Notes On Magnetotellurics, in: Survey in Geophysics. Kluwer Academic Publisher, Netherlands, pp. 341–375.
Bertrand, E.A., Unsworth, M.J., Chiang, C.-W., Chen, C.-S., Chen, C.-C., Wu, F.T., Türkoğlu, E., Hsu, H.-L., Hill, G.J., 2012. Magnetotelluric imaging beneath the Taiwan orogen: An arc-continent collision. J. Geophys. Res. Solid Earth 117. https://doi.org/10.1029/2011JB008688
Biete, C., Alvarez-Marron, J., Brown, D., Kuo-Chen, H., 2018. The Structure of Southwest Taiwan: The Development of a Fold-and-Thrust Belt on a Margins Outer Shelf and Slope. Tectonics 37, 1973–1993. https://doi.org/10.1029/2017TC004910
Bobachev, A.A., 2002. IPI2Win(MT) v.2.0 User’s Guide. Moscow State University, Geoscan-M Ltd., Moscow, Russia.
Borah, U.K., Patro, P.K., Suresh, V., 2015. Processing of noisy magnetotelluric time series from Koyna-Warna seismic region, India: a systematic approach. Ann. Geophys. https://doi.org/10.4401/ag-6690
CGS, T., 2002. Hydrogeological Survey Report of Pingtung Plain,. Taiwan: Central Geological Survey, Ministry of Economic Affairs, Executive Yuan, pp. 97–142.
Chave, A., Jones, A.G., 2012. The Magnetotelluric Method Theory and Practice. Cambridge University Press, New York.
Chave, A.D., Thomson, D.J., 2004. Bounded influence magnetotelluric response function estimation. Geophys. J. Int. 157, 988–1006. https://doi.org/10.1111/j.1365-246X.2004.02203.x
Chen, S.-C., Hsu, S.-K., Wang, Y., Chung, S.-H., Chen, P.-C., Tsai, C.-H., Liu, C.-S., Lin, H.-S., Lee, Y.-W., 2014. Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. J. Asian Earth Sci. 92, 201–214. https://doi.org/10.1016/j.jseaes.2013.10.009
Chiang, C.-S., Yu, H.-S., Chou, Y.-W., 2004. Characteristics of the wedge-top depozone of the southern Taiwan foreland basin system. Basin Res. 16, 65–78. https://doi.org/10.1111/j.1365-2117.2004.00222.x
Chiang, S.C., 1971. Seismic study of the Chaochou structure, Pingtung,Taiwan.
Christopherson, K.R., 2001. Magnetotellurics (MT): Technique, Interpretation, and Application [WWW Document]. http://www.searchanddiscovery.com/. URL (accessed 11.30.19).
Constable, S.C., Parker, R.L., Constable, C.G., 1987. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. GEOPHYSICS 52, 289–300. https://doi.org/10.1190/1.1442303
deGroot‐Hedlin, C., Constable, S., 1990. Occam’s inversion to generate smooth, two‐dimensional models from magnetotelluric data. GEOPHYSICS 55, 1613–1624. https://doi.org/10.1190/1.1442813
Doo, W.-B., Hsu, S.-K., Lo, C.-L., Chen, S.-C., Tsai, C.-H., Lin, J.-Y., Huang, Y.-P., Huang, Y.-S., Chiu, S.-D., Ma, Y.-F., 2015. Gravity anomalies of the active mud diapirs off southwest Taiwan. Geophys. J. Int. 203, 2089–2098. https://doi.org/10.1093/gji/ggv430
Doo, W.-B., Lo, C.-L., Hsu, S.-K., Tsai, C.-H., Huang, Y.-S., Wang, H.-F., Chiu, S.-D., Ma, Y.-F., Liang, C.-W., 2018. New gravity anomaly map of Taiwan and its surrounding regions with some tectonic interpretations. J. Asian Earth Sci. 154, 93–100. https://doi.org/10.1016/j.jseaes.2017.12.010
Gamble, T.D., Goubau, W.M., Clarke, J., 1979. Magnetotellurics with a remote magnetic reference. GEOPHYSICS 44, 53–68. https://doi.org/10.1190/1.1440923
Giletycz, S.J., Lin, A.T.-S., Chang, C.-P., Shyu, J.B.H., 2019. Relicts of mud diapirism of the emerged wedge-top as an indicator of gas hydrates destabilization in the Manila accretionary prism in southern Taiwan (Hengchun Peninsula). Geomorphology 336, 1–17. https://doi.org/10.1016/j.geomorph.2019.03.022
Hou, C.-S., Hu, J.-C., Shen, L.-C., Wang, J.-S., Chen, C.-L., Lai, T.-C., Huang, C., Yang, Y.-R., Chen, R.-F., Chen, Y.-G., Angelier, J., 2005. Estimation of subsidence using GPS measurements, and related hazard: the Pingtung Plain, southwestern Taiwan. Comptes Rendus Geosci. 337, 1184–1193. https://doi.org/10.1016/j.crte.2005.05.012
Hsieh, H.-H., Yen, H.-Y., 2016. Three-dimensional density structures of Taiwan and tectonic implications based on the analysis of gravity data. J. Asian Earth Sci. 124, 247–259. https://doi.org/10.1016/j.jseaes.2016.05.009
Hsu, K.-C., Wang, C.-H., Chen, K.-C., Chen, C.-T., Ma, K.-W., 2007. Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrogeol. J. 15, 903–913. https://doi.org/10.1007/s10040-006-0137-x
Hu, J.-C., Hou, C.-S., Shen, L.-C., Chan, Y.-C., Chen, R.-F., Huang, C., Rau, R.-J., Chen, K.H.-H., Lin, C.-W., Huang, M.-H., Nien, P.-F., 2007. Fault activity and lateral extrusion inferred from velocity field revealed by GPS measurements in the Pingtung area of southwestern Taiwan. J. Asian Earth Sci. 31, 287–302. https://doi.org/10.1016/j.jseaes.2006.07.020
Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M., Hsieh, H.-H., 2014. Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth Planet. Sci. Lett. 392, 177–191. https://doi.org/10.1016/j.epsl.2014.02.026
Huang, P.-S., Chiu, Y.-C., 2018. A Simulation-Optimization Model for Seawater Intrusion Management at Pingtung Coastal Area, Taiwan. Water 10, 251. https://doi.org/10.3390/w10030251
Jang, C.-S., Chen, C.-F., Liang, C.-P., Chen, J.-S., 2016. Combining groundwater quality analysis and a numerical flow simulation for spatially establishing utilization strategies for groundwater and surface water in the Pingtung Plain. J. Hydrol. 533, 541–556. https://doi.org/10.1016/j.jhydrol.2015.12.023
Jones, A.G., 1988. Static shift of magnetotelluric data and its removal in a sedimentary basin environment. GEOPHYSICS 53, 967–978. https://doi.org/10.1190/1.1442533
Kelbert, A., Meqbel, N., Egbert, G.D., Tandon, K., 2014. ModEM: A modular system for inversion of electromagnetic geophysical data. Comput. Geosci. 66, 40–53. https://doi.org/10.1016/j.cageo.2014.01.010
Kim, K.-H., Chiu, J.-M., Pujol, J., Chen, K.-C., Huang, B.-S., Yeh, Y.-H., Shen, P., 2005. Three-dimensional V P and V S structural models associated with the active subduction and collision tectonics in the Taiwan region. Geophys. J. Int. 162, 204–220. https://doi.org/10.1111/j.1365-246X.2005.02657.x
Krieger, L., Peacock, J.R., 2014. MTpy: A Python toolbox for magnetotellurics. Comput. Geosci. 72, 167–175. https://doi.org/10.1016/j.cageo.2014.07.013
Kuo-Chen, H., Wu, F.T., Roecker, S.W., 2012. Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets: 3D VP STRUCTURES FROM TAIGER PROJECT. J. Geophys. Res. Solid Earth 117, n/a-n/a. https://doi.org/10.1029/2011JB009108
Lahti, I., 2015. AUDIOMAGNETOTELLURIC (AMT) MEASUREMENTS: A NEW TOOL FOR MINERAL EXPLORATION AND UPPER CRUSTAL RESEARCH AT THE GEOLOGICAL SURVEY OF FINLAND. Geol. Surv. Finl. Special Paper 57, 155–172.
Liang, C.-P., Jang, C.-S., Liang, C.-W., Chen, J.-S., 2016. Groundwater Vulnerability Assessment of the Pingtung Plain in Southern Taiwan. Int. J. Environ. Res. Public. Health 13, 1167. https://doi.org/10.3390/ijerph13111167
Lin, K.-P., Chou, P.-C., Dong-Sin, S., 2016. To Study Hydrological Variabilities by Using Surface and Groundwater Coupled Model – A Case Study of PingTung Plain, Taiwan. Procedia Eng. 154, 1034–1042. https://doi.org/10.1016/j.proeng.2016.07.593
Liu, T.-Y., 2005. The Primary Results of Gravity and Magnetic Survey in Kaoping Area (Master Thesis). National Central University, Taiwan.
Lo, Y.-T., Yen, H.-Y., Chen, C.-R., 2018. Correlation between the Bouguer gravity anomaly and the TAIGER tomography of the Taiwan region. Terr. Atmospheric Ocean. Sci. 29, 473–483. https://doi.org/10.3319/TAO.2018.03.01.01
Luan, X., Di, Q., Cai, H., Jorgensen, M., Tang, X., 2018. CSAMT Static Shift Recognition and Correction Using Radon Transformation. IEEE Geosci. Remote Sens. Lett. PP, 1–5. https://doi.org/10.1109/LGRS.2018.2820743
Maithya, J., Fujimitsu, Y., 2019. Analysis and interpretation of magnetotelluric data in characterization of geothermal resource in Eburru geothermal field, Kenya. Geothermics 81, 12–31. https://doi.org/10.1016/j.geothermics.2019.04.003
Malleswari, D., Veeraswamy, K., Abdul Azeez, K.K., Gupta, A.K., Babu, N., Patro, P.K., Harinarayana, T., 2019. Magnetotelluric investigation of lithospheric electrical structure beneath the Dharwar Craton in south India: Evidence for mantle suture and plume-continental interaction. Geosci. Front. 10, 1915–1930. https://doi.org/10.1016/j.gsf.2018.10.011
Marine EM Lab, 2006. Occam 2D MT File Format Notes.
Mwakirani, R., Simiyu, C., Gichira, J., n.d. Application of Transient Electromagnetics in Static Shift Correction for Magnetotellurics Data Case Study: Paka Geothermal Prospect in Kenya 4.
Petiau, G., Dupis, A., 1980. NOISE, TEMPERATURE COEFFICIENT, AND LONG TIME STABILITY OF ELECTRODES FOR TELLURIC OBSERVATIONS*. Geophys. Prospect. 28, 792–804. https://doi.org/10.1111/j.1365-2478.1980.tb01261.x
Selway, K., Thiel, S., Key, K., 2012. A simple 2-D explanation for negative phases in TE magnetotelluric data: Simple 2D explanation for negative TE phases. Geophys. J. Int. 188, 945–958. https://doi.org/10.1111/j.1365-246X.2011.05312.x
Shalivahan, Bhattacharya, B.B., 2002. How remote can the far remote reference site for magnetotelluric measurements be? J. Geophys. Res. 107, 2105. https://doi.org/10.1029/2000JB000119
Simpson, F., Bahr, K., 2005. Practical Magnetotellurics. https://doi.org/10.1017/CBO9780511614095
Sternberg, B., Washburne, J., Pellerin, L., 1988. Correction for static shift in magnetotellurics using transient electromagnetic soundings. GEOPHYSICS 53, 1459–1468. https://doi.org/10.1190/1.1442426
Szarka, L., 1988. Geophysical aspects of man-made electromagnetic noise in the earth - a review, in: Surveys in Geophysics. Kluwer Academic Publisher, Hungary, p. 32.
Tournerie, B., Chouteau, M., Marcotte, D., 2007. Magnetotelluric static shift: Estimation and removal using the cokriging methodMagnetotelluric static shift. Geophysics 72, F25–F34. https://doi.org/10.1190/1.2400625
Uchida, T., Song, Y., Lee, T.J., Mitsuhata, Y., Lim, S.-K., Lee, S.K., 2005. Magnetotelluric Survey in an Extremely Noisy Environment at the Pohang Low-Enthalpy Geothermal Area, Korea. Proc. World Geotherm. Congr. 9.
Unsworth, M., 2007. Magnetotellurics, in: Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht.
Vozoff, K., 1990. Magnetotellurics: Principles and practice. Princ. Pract. 99, 31.
Weckmann, U., Magunia, A., Ritter, O., 2005. Effective noise separation for magnetotelluric single site data processing using a frequency domain selection scheme. Geophys. J. Int. 161, 635–652. https://doi.org/10.1111/j.1365-246X.2005.02621.x
Wu, F.T., Kuo-Chen, H., McIntosh, K.D., 2014. Subsurface imaging, TAIGER experiments and tectonic models of Taiwan. J. Asian Earth Sci. 90, 173–208. https://doi.org/10.1016/j.jseaes.2014.03.024
Yang, C., Lin, C., 2001. Judgment and correction for MT static shift by TEM inversion method 26, 609–614.
You, C.-F., Gieskes, J.M., Lee, T., Yui, T.-F., Chen, H.-W., 2004. Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Appl. Geochem. 19, 695–707. https://doi.org/10.1016/j.apgeochem.2003.10.004
Zhang, L., Hao, T., Xiao, Q., Wang, J., Zhou, L., Qi, M., Cui, X., Cai, N., 2015. Magnetotelluric investigation of the geothermal anomaly in Hailin, Mudanjiang, northeastern China. J. Appl. Geophys. 118, 47–65. https://doi.org/10.1016/j.jappgeo.2015.04.006
指導教授 張竝瑜(Chang Ping-Yu) 審核日期 2021-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明