博碩士論文 107623009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.238.96.184
姓名 吳世安(Shih-An Wu)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 利用GNSS地面接收機觀察電離層全電子含量變化率指數之全球分佈
(Global ROTI Distribution Observed by Worldwide Ground-based GNSS Receivers)
相關論文
★ 台灣地區1996年散塊E層之變化★ 2000年4月6日磁暴研究
★ 利用GPS觀測與IRI 模擬研究1997及2000年台灣經度赤道異常峰之變化★ 台灣地區1996及2000年電離層散狀F層與全球定位系統相位擾亂之比較
★ 電離層地震前兆之研究★ 電離層波動垂直能量傳播之研究
★ 南美洲磁赤道地區散狀F層於太陽活動極大期之研究★ 台灣地區中界層於第22-23太陽週期間之特性研究
★ 利用全球定位系統觀測電離層地震前兆★ 臺灣地區電離層季節異常與太陽活動之相關性研究
★ 台灣地區地震與閃電之研究★ 台灣地區地震前之電離層電子濃度異常
★ 磁暴時低緯度電離層變化★ 電離層赤道異常與赤道電噴流
★ 日出前及日落後電離層高度變化之研究★ 電離層探測儀與全球定位系統聯合觀測電離層F層電漿密度不規則體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2022-7-20以後開放)
摘要(中) 本論文利用全球導航衛星系統(Global Navigation Satellite System, GNSS)地面接收機資料紀錄,推演計算電離層全電子含量(Total Electron Content, TEC)擾動指數(Rate of TEC Index, ROTI),以探討電離層電子密度不規則體的日、季、太陽活動與全球分佈。分析國際GNSS服務(International GNSS Service, IGS)所公佈地面GNSS接收機L1和L2波段訊號資料,並藉此計算每5分鐘內TEC變化率的標準偏差,即是ROTI,其相當於TEC電波相位擾動。目前全球約有2000座以上的地面接收機台站,其GNSS訊號可用以計算每30秒一筆TEC資料。分別針對太陽極大期(2000年)、太陽極小期(2009年)與太陽中強期(2013年)ROTI研究其日、季、太陽活動、經度與緯度變化。結果顯示中低緯度ROTI主要發生在磁緯度±30 ̊間,日落後1900LT開始出現、夜間2100LT達到最大、最終於子夜後0200LT消失,其於春和秋季至為明顯,且在南美洲上空最為強烈。除了太陽極小期外,磁緯度±30 ̊之ROTI通常會出現明顯雙峰現象,其中心位置集中於20 ̊ N和20 ̊ S。一般而言,極區ROTI會比中低緯度的強烈,尤其是南極地區。此外,結合福衛三號S4閃爍模型經驗,補足ROTI於海上及偏遠地區觀測之不足,可建構ROTI全球模式,以推估地面GNSS訊號相位擾亂和電離層電子密度之擾亂程度與分佈,其除可用於電離層科學研究外,並可提供衛星通訊、定位與導航應用參考。
摘要(英) The thesis goal is to study the diurnal, seasonal, solar activity and geographic variations of ionospheric irregularities by means of Rate of TEC Index (ROTI) derived by measurements of worldwide ground-based GNSS (Global Navigation Satellite System) receivers. Routine observations of the ionospherically imposed propagation effects upon GNSS satellite signals are available online from International GNSS Service (IGS). With data over 2000 ground-based IGS stations of the globe, ionospheric total electron content (TEC) with the 30-sec time resolution can be derived. The standard deviation of TEC variations in a 5-minute interval is further computed to obtain ROTI around each receiving station. Variations in diurnal, seasonal, solar activity and geographic distribution of ROTI are examined during the solar maximum year of 2000, solar minimum year of 2009, and solar median year of 2013. Results show that intense ROTIs frequently appear in the low-latitude ionosphere within ±30-degree magnetic dip; start at 1900 LT (Local Time), reach their maximum at 2000-2100 LT, and vanish by about 0200 LT, especially prominently in the spring and autumn seasons. The region experiencing the most intense ROTI is the low-latitude ionosphere in South America. ROTIs often exhibit a double-peaked structure at 20 ̊N and 20 ̊S geomagnetic except in the solar minimum year. It is interesting to find that ROTIs in high-latitude region, especially in the southern polar region are much more intense than those in low- and mid-latitude region. Based on FORMOSAT-3 S4 data, a global ROTI model is constructed, which can be used not only for ionospheric scintillation scientific researches but also positioning, navigation, and communication applications.
關鍵字(中) ★ 全球導航衛星系統
★ 全電子含量
★ 全電子含量變化率指數
★ 閃爍
★ 經驗模型
關鍵字(英) ★ GNSS
★ TEC
★ ROTI
★ scintillation
★ empirical model
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 iv
第一章 緒論 1
1.1 研究動機與目的 1
第二章 儀器與方法 7
2.1 全球定位系統 GPS 7
2.2 全電子含量 TEC 11
第三章 全電子含量變化率指數ROTI之形態 15
3.1 ROTI日變化 15
3.2 ROTI季變化 22
3.3 ROTI太陽活動變化 25
3.4 ROTI地理分佈 27
第四章 討論與結論 35
4.1 ROTI 與S4-index 35
4.2 ROTI 全球模式 48
參考文獻 54
附錄 57
參考文獻 Aarons, J. (1985). Construction of a model of equatorial scintillation intensity. Radio Science, 20, 397- 402. doi:10.1029/RS020i003p00397.
Aarons, J. M. Mendillo, R. Yantosca. (1997). GPS phase fluctuations in the equatorial region during sunspot minimum. Radio Science, 32, 1535–1550.
Basu, S., E. MacKenzie, S. Basu. (1988). Ionospheric constraints on VHF = UHF communication links during solar maximum and minimum periods. Radio Science, 23, 363-378.
Chen, S. P., D. Bilitza, J. Y. Liu, R. Caton, Loren C. Chang and W. H. Yeh. (2017). An empirical model of L-band scintillation S4 index constructed by using FORMOSAT-3/COSMIC data. Advances in Space Research, 60, 1015-1028. doi.org/10.1016/j.asr.2017.05.031.
Davies, K. (1989). Ionospheric Radio, Peter Peregrinus Ltd.
Huang, C.-S., O. de La Beaujardiere, P. A. Roddy, D. E. Hunton, J. Y. Liu, and S. P. Chen (2014). Occurrence probability and amplitude of equatorial ionospheric irregularities associated with plasma bubbles during low and moderate solar activities. J. Geophys. Res. Space Physics, 119, 1186–1199, doi:10.1002/2013JA019212.
Iurii, C., A. Krankowski, I. Zakharenkova. (2018). ROTI Maps: a new IGS ionospheric product characterizing the ionospheric irregularities occurrence. GPS Solutions, 22, doi.org/10.1007/s10291-018-0730-1.
Krankowski A, Iurii Cherniak, and Irina Zakharenkova. (2017). The new IGS ionospheric product - TEC fluctuation maps and their scientific application. 19th EGU General Assembly, EGU2017, Vienna, Austria, 23-28 April 2017.
Liu, J. Y., S. P. Chen, W. H. Yeh, H. F. Tsai, and P. K. Rajesh. (2016). Worst-case GPS scintillations on the ground estimated from radio occultation observations of FORMOSAT-3/ COSMIC during 2007-2014. Surveys in Geophysics, 37, 791–809. doi:10.1007/s 10712-015-9355-x.
Liu, J. Y., H. F. Tsai, and T. K. Jung. (1996). Total electron content obtained by using the global positioning system, TAO, 7, 107-117.
Mendillo, M., B. Lin, J. Aarons. (2000). The application of GPS observations to equatorial aeronomy. Radio Science, 35, 885-904. doi: /10.1029/1999RS002208.
Pi, X., A. J. Mannucci, U. J. Lindqwister, C. M. Ho. (1997). Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys. Res. Lett. 24, 2283-2286.
Rajesh, P. K., J. Y. Liu, N. Balan, C. H. Lin, Y. Y. Sun, and S. A. Pulinets. (2016). Morphology of midlatitude electron density enhancement using total electron content measurements. J. Geophys. Res. Space Physics, 121, 1503– 1517. doi:10.1002/2015JA022251.
Sardon, E., A. Rius, and N. Zarraoa. (1994). Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Science, 29, 577-586.
Sover, O. J., J. L. Fanselow. (1987). Observation model and parameter partials for the JPL VLBI parameter estimation software MASTERFIT-1987. Jet Propulsion Lab. Publ., 83-39, Rev. 3, 1-60.
Su, S.-Y., C. H. Liu, H. H. Ho, and C. K. Chao. (2006). Distribution characteristics of topside ionospheric density irregularities: Equatorial versus midlatitude regions, J. Geophys. Res., 111, A06305, doi:10.1029/2005JA011330.
Syndergaard, S., (2006). COSMIC S4 Data, Retrieved from https://cdaac-www.cosmic.ucar.edu/cdaac/doc/documents/s4_description.pdf.
Yang, Z, Z. Liu. (2016). Correlation between ROTI and ionospheric scintillation indices using Hong Kong low-latitude GPS data. GPS Solut, 20, 815–824. doi: 10.1007/s10291-015-0492-y.
指導教授 劉正彥(Jann-Yenq Liu) 審核日期 2020-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明