博碩士論文 107624004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.236.156.34
姓名 彭睿平(Rui-Ping Peng)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 多層地質介質多物種遷移解析解發展
(Analytical model for multispecies migration in a layered geological medium)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 異向含水層部分貫穿井溶質傳輸分析
★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響★ 有限長度圓形土柱實驗二維溶質傳輸之解析解
★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響
★ 關渡平原地下水流動模擬★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度
★ 關渡濕地沉積物中砷之地化循環與分布★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2022-8-31以後開放)
摘要(中) 自然界中的地下水含水層系統為多種不同成分的介質組成之系統,因不同介質有不同的物理與化學性質,使傳輸行為變得複雜。另外,常見的地下水污染物會在傳輸過程中發生衰變作用或降解反應,比如含氯有機溶劑、核廢料、氨氮肥料等。因此,單區域單一物種污染物之解析解模式已不敷使用。多層多物種耦合一階序列衰變反應之移流–延散方程組為用來理解多層介質系統傳輸機制之有效率的工具。本研究發展多區域多物種反應傳輸解析解模式,模擬多物種污染物在多層介質地下水系統中的傳輸行為。研究中傳輸方程式分別以第三類定濃度入流邊界及變濃度入流邊界求解,並利用Laplace轉換消除時間偏微分項,撰寫FORTRAN程式執行解析解的逆轉換以及運算。所得之解析解比對Laplace轉換有限差分法(Laplace transform finite difference,LTFD)求得之數值解,並與過去文獻的結果比較後相符,驗證了本篇解析解模式的正確性。本篇解析解能應用於調查不同傳輸機制與行為對溶質分布的影響,對於調查污染物及應用於污染防治有所貢獻。
摘要(英) The transport behaviors through layered groundwater system are complicated due to the different physical and chemical properties of different materials of each layer. Transport processes of some contaminants, such as chlorinated solvents, radionuclides, and nitrogen fertilizers involve a series of sequential first-order decay chain reactions, and during migrations of decaying contaminants may sequentially form and move downstream with elevated concentrations. As the result, single-species analytical models do not permit transport behaviors of successor species of these decaying contaminants to be evaluated. A set of advection-dispersion equations couple with first-order sequential decay chain reactions in multi-domain system are efficient tools to understand how the various mechanisms affects reactive solute transport through nonhomogeneous layered geological media. This study presents an analytical model for multi-species transport in multi-domain system to simulate the transport behavior of degradable contaminants. The analytical solutions are solved for both the first-type and third-type inlet boundary conditions and derived with the aid of Laplace transform. The solutions are compared with the results of the numerical model which are solved by using the advanced Laplace transform finite difference method. The developed multi-domain analytical model can be applied to investigate how transport processes and mechanisms influence the multi-species solute transport in the multi-layer groundwater system.
關鍵字(中) ★ 多層系統
★ 多物種污染物
★ 地下水污染傳輸
★ 地質介質
★ 三層介質
★ 含氯有機溶劑
★ 放射性核種
關鍵字(英) ★ layered system
★ multispecies
★ groundwater
★ geological medium
★ multi-layer
★ chlorinated solvents
★ radionuclides
論文目次 摘要…………………………………………………………………………………………………i
Abstract………………………………………………………………………………………ii
誌謝…………………………………………………………………………………………………iii
目錄…………………………………………………………………………………………………iv
圖目錄……………………………………………………………………………………………v
表目錄……………………………………………………………………………………………vii
符號說明………………………………………………………………………………………ix
一、 緒論……………………………………………………………………………1
1-1 研究動機……………………………………………………………………………1
1-2 文獻回顧……………………………………………………………………………4
1-3 研究目的……………………………………………………………………………6
二、 多層地質介質多物種遷移解析解數學模式…………………7
2-1 基本假設與模式建立………………………………………………………………………7
2-2 多層地質介質多物種遷移解析解的推導………………………………12
三、 結果與討論………………………………………………………………………………17
3-1 解析解模式驗證:例子一、含氯有機溶劑…………………………17
3-2 解析解模式驗證:例子二、放射性核種-時變濃度入流邊界…………22
3-3 探討傳輸機制與行為對溶質遷移的影響………………………………28
四、 結論與建議………………………………………………………………………………55
參考文獻………………………………………………………………………………………………………57
附錄、各物種解析解之推導…………………………………………………………………63
參考文獻 Al-Niami, A.N.S., and Rushton, K.R., “Dispersion in stratified porous media: Analytical solutions”, Water Resources Research, Vol. 15(5), pp. 1044-1048, 1979.
Bear, J.C., “Hydraulics of Groundwater”, McGraw-Hill, New York, 1979.
Barry, D.A., and Parker, J.C., “Approximations for solute transport through porous media with flow transverse to layering”, Transport Porous Media, Vol.2, pp. 65-82, 1987.
Bauer, P., Attinger, S., and Kinzelbach, W., “Transport of a decay chain in homogenous porous media: Analytical solutions”, Journal of Contaminant Hydrology, Vol. 49, pp. 217-239, 2001.
Chen, H., Ding, G., Han, W.S., Kim, K.Y., and Park, E., “Multispecies transport coupled to a first-order reaction network in a double-domain medium”, Water Resources Research, Vol. 48, doi: 10.1029/2011WR011351,2012.
Chen, J.S., Liu, C.W., Liang, C.P., and Lai, K.H., “Generalized analytical solutions to sequentially coupled multi-species advective-dispersive transport equations in finite domain subject to an arbitrary time-dependent source boundary condition”, Journal of Hydrology, Vol. 456-457, pp. 101-109, 2012a.
Chen, J.S., Lai, K.H., Liu, C.W., and Ni, C.F., “A novel method for analytical solving multi-species advective-dispersive transport equations sequentially coupled with first decay reaction”, Journal of Hydrology, Vol. 420-421, pp. 191-204, 2012b.

Chen, J.S., Hsu, S.Y., Li, M.H., and Liu, C.W., “Assessing the performance of a permeable reactive barrier-aquifer system using a dual-domain solute transport model”, Journal of Hydrology, Vol. 543, pp. 849-860, 2016a.
Chen, J.S., Liang, C.P., Liu, C.W., and Li, L.Y., “An analytical model for simulating two-dimensional multispecies plume migration”, Hydrology and Earth System Sciences, Vol. 20, pp. 733-753, 2016b.
Chen, H., Park, E., and Hu, C., “A design solution of PRB with multispecies transport base on a multi-domain system”, Environmental Earth Sciences, Vol. 77, pp. 230, 2018.
de Hoog, F.R., Knight, J.H., and Stokes, A.N., “An improved method for numerical inversion of Laplace transforms”, SIAM Journal on Science and Statistical Computing, Vol. 3(3), 1982.
Gureghian, A.B., and Jansen, G., “One-dimensional analytical solutions for the migration of a three-member radionuclide decay chain in a multilayered geologic medium”, Water Resources Research, Vol. 21(5), pp. 733-742,1985.
Kreft, A., and Zuber, A., “Comment on “Flux-averaged and volume-averaged concentrations in continuum approaches to solute transport”, Water Resources Research, Vol. 22(7), pp. 1157-1158, 1986.


Leij, F.J., Dane, J.H., and van Genuchten, M.Th., “Mathematical analysis of one-dimensional solute transport in a layered soil profile”, Soil Science Society of America Journal, Vol. 55, July-August 1991.
Leij, F.J., Toride, N., and van Genuchten, M.Th., “Analytical solution for non-equilibrium solute transport in three dimensional porous media”, Journal of Hydrology, Vol. 151(2-4), pp. 193-228, 1993.
Leij, F.J., and van Genuchten, M.Th., “Approximate analytical solutions for solute transport in two-layer porous media”, Transport in Porous Media, Vol. 18, pp. 65-85, 1995.
Liu, C., Ball, W.P., and Ellis, J.H., “An analytical solution to the one-dimensional solute advection-dispersion equation in multi-layer porous media”, Transport in Porous Media, Vol. 30, pp. 25-43, 1998.
Mieles, J., and Zhan, H., “Analytical solution for one-dimensional multispecies reactive transport in a permeable barrier-aquifer system”, Journal of Contaminant Hydrology, Vol. 134-135, pp. 54-68, 2012.
Parker, J.C., and van Genuchten, M.Th., “Flux-averaged and volume-averaged concentrations in continuum approaches to solute transport”, Water Resources Research, Vol. 20(7), pp. 866-872, 1984.


Park, E., and Zhan, H., “Analytical solution of contaminant transport from finite one-, two-, three-dimensional sources in a finite-thickness aquifer”, Journal of Contaminant Hydrology, Vol. 151(2-4), pp. 193-228, 1993.
Park, E., and Zhan, H., “One-dimensional solute transport in a permeable barrier-aquifer system”, Water Resources Research, Vol. 45, W07502, doi:10.1029/2008WR007155, 2009.
Pérez Guerrero, J.S., Skaggs, T.H., and van Genuchten, M.Th., “Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media”, Transport Porous Media, Vol. 80, pp. 373-387, 2009.
Pérez Guerrero, J.S., Pimentel, L.C.G., and Skaggs, T.H., “Analytical solution for the advection-dispersion transport equation in layered media”, International Journal of Heat and Mass Transfer Vol. 56, pp. 274-282, 2013.
Peng, C.H., Feng, S.J., Zheg, Q.T., Ding, X.H., Chen, Z.L., and Chen, H.X., “A two-dimensional analytical solution for organic contaminant diffusion through a composite geomembrane cut-off wall and an aquifer”, Computers & Geotechnics, Vol. 119, 103361, 2020.
Shamir, U.Y., and Harleman, D.R.F., “Dispersion in layered porous media”, Journal of the Hydraulics Division, Vol. 93, pp. 236-260, 1967.


van Genuchten, M.Th., and Alves, W.J., “Analytical solutions of the one-dimensional convective-dispersive solute transport equation”, U.S. Department of Agriculture, Technical Bulletin, No. 1661, 1982.
van Genuchten, M.Th., and Parker, J.C., “Boundary conditions for displacement experiments through short laboratory soil columns”, Soil Science Society of America Journal, Vol. 48(4), pp. 703-708, 1984.
van Genuchten, M.Th., “Convective-dispersive transport of solutes involved in sequential first-order decay reaction”, Computers & Geosciences. Vol. 11(2), pp.129-147,1985.
指導教授 陳瑞昇(Jui-Sheng Chen) 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明