博碩士論文 107624007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.116.51.117
姓名 林彥耀(Yan-Yao Lin)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 2016美濃地震引致嘉南平原與屏東平原地下水文特性變化研究
(2016 Meinong earthquake induced hydrological property changes in Chianan and Pingtung plains, Taiwan)
相關論文
★ 水文地質概念模型差異對污染傳輸模擬之影響★ 台灣西南部因地下水開發與構造活動引致地層下陷之研究
★ Evaluating Geological Model Uncertainty Caused by Data Sufficiency – Using Groundwater Flow and Land Subsidence Modeling as the Example★ 序率熱–水–力全耦合模式在相依參數條件下之交互作用行為探討
★ 整合河床出入滲試驗與數值模擬探討東港溪流域地下水與 河川交換量季節特徵★ A Three-Step Time-Series Method for Assessing the Barometric Efficiency in the Donggang River Watershed, Taiwan
★ Assessment of future climate change impacts on streamflow and groundwater by hydrological modeling in the Choushui River Alluvial Fan, Taiwan★ 以水-力耦合模式探討不同複雜度地質模型對地層下陷模擬之影響—以雲林地區為例
★ Investigation on the Influences of Various Complexity of Hydrogeological Models on Pore Water Pressure Buildup Triggered by Seismic Wave Propagation★ 異質性水文地質模型於地下水數值模擬之應用——以臺北盆地為例
★ 發展耦合HMC數值模式以探討地質模型複雜度對海水入侵與地層下陷的影響:以台灣屏東平原為例★ Spatiotemporal Variations of the Skeletal Specific Storage in Choushui River Aquifer System, Taiwan
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 透過地震引致異常水文現象為了解水文地質特性的有效方法,而水文地質資料的完整性也是地震水文研究的關鍵。本研究蒐集2016高雄美濃地震震後地表與地下水文變化情形,嘗試理解地震引致台灣南部地區水文變化的機制。藉由分析第一含水層之同震水位變化之空間分布,以及地表破裂與液化噴砂之位置,可以發現同震水位變化主要發生在震央西北部的嘉南平原,而許多的液化與破裂點位位於新化斷層沿線。將液化點位與尖峰地動加速度與尖峰地動速度(PGA,PGV)的內插結果進行比較,結果顯示液化事件與PGV之關聯性較高。細究其數值則顯示引發液化事件之PGA門檻值約為150 cm/s^2,而PGV之門檻值約為40 cm/s。另外,新化斷層周圍數個地下水井中,部分深部含水層井位觀測到的水位變化不同於其他嘉南平原之水井呈現整體水位上升的情形,反而顯示同震水位下降,其位於淺部含水層的井位則顯示同震水位上升。其中,新化與那菝兩井顯示出不同深度的地下水位於震後變得靠近的現象,可能為不同含水層在震後變得連通而產生垂向的水壓傳遞所致。而我們對於含水層間連通性變化的推測,可以藉由以地潮分析不同含水層地下水位得出的相位差結果驗證,並且估算震前與震後含水層之導水係數變化情形,以此探討地震對於區域含水層的影響。結果顯示,新化井不同深度含水層之相位差變化趨勢於震後變得相似,代表新化井不同深度之含水層於地震後因裂隙而產生垂向連通,並引起地下水位變得相近。
摘要(英) The observations of hydrological anomalies induced by earthquakes are valuable data to investigate the hydrogeological properties. In this research, we collected the hydrological data before and after the Mw 6.4 2016 Meinong Earthquake. The main purpose is to investigate the mechanism of hydrological changes triggered by earthquakes. From the distribution of groundwater level changes at the first aquifer, as well as the distributions of the surface rupture and liquefaction points, it is found that the co-seismic groundwater level change is large in Chianan Plain, in the northwest area of the epicenter, and accompanied with a lot of ruptures and liquefactions located along the Hsinhua Fault. We compared the liquefaction points with the interpolated values of peak ground acceleration (PGA) and peak ground velocity (PGV) data, the result shows that the distribution of liquefaction points have the similar pattern with that of PGV values. The minimum threshold values of PGA and PGV for earthquake induced liquefaction are about 150 cm/s^2 and 40 cm/s, respectively. By the way, the observations in some wells in the deeper aquifer around the Hsinhua Fault show a different groundwater level change compared with the other wells in Chianan Plain. These wells show groundwater level decreases in the deep aquifer and increases in the shallow aquifer. In these wells, the Naba and Hsinhua wells show groundwater level convergence at different depths after the Meinong Earthquake. The earthquake enhances the connectivity between different aquifers and produces a vertical pressure propagation, that might be one possible mechanism for this phenomenon. The hypothesis of connectivity changes between different aquifers can be verified by analyzing the tidal response in different aquifers. Tidal analysis uses the phase shift pattern to judge if the aquifer permeability and transmissivity were changed after earthquakes, which is an important clue to understand how earthquake influences the hydrogeological properties. The results show that the pattern of phase shift at the Hsinhua well in different aquifers become similar, which is the evidence in proving the connection between different aquifers.
關鍵字(中) ★ 2016美濃地震
★ 地下水文
★ PGV&PGA
★ 水文地質特性
★ 地潮分析
關鍵字(英) ★ 2016 Meinong Earthquake
★ groundwater hydrology
★ PGV&PGA
★ hydrogeological property
★ earth tidal analysis
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xi
符號說明 xii
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的與流程 2
第二章 文獻回顧 4
2-1 同震地下水位變化 4
2-2 地震引致地下水位變化機制 6
2-2-1 應變模型(Strain model) 6
2-2-2 不排水壓密(Undrained consolidation) 8
2-2-3 破裂模型(Crack model) 8
2-2-4 震央距與地下水位變化機制 9
2-3 地震引致河川基流量變化 10
2-3-1 同震彈性應變(Coseismic elastic strain) 12
2-3-2 滲透率增加 (Enhanced permeability) 12
2-3-3 同震壓密與液化 (Coseismic consolidation and liquefaction) 13
第三章 研究區域與資料蒐集 14
3-1 美濃地震 14
3-2 美濃地震造成之災害 16
3-2-1 地表破裂 16
3-2-2 土壤液化與噴砂 17
3-3 嘉南平原 19
3-3-1 區域概況 19
3-3-2 區域地質概述 20
3-3-3 新化斷層簡介 22
3-4 屏東平原 22
3-4-1 區域概況 22
3-4-2 區域地質概述 23
3-5 水文資訊觀測系統 24
3-5-1 水利署地下水觀測網 25
3-5-2 中央氣象局地震地下水觀測網 28
3-6 資料蒐集概況 28
第四章 研究方法 31
4-1 地潮分析 31
4-2 分析程式 37
4-2-1 Baytap-G介紹 37
4-2-2 Baytap-G之分析結果測試 42
第五章 結果與討論 44
5-1 同震水文現象變化 44
5-1-1 地下水文變化 44
5-1-2 河川流量變化 53
5-2 地震波與地下水位階變量 58
5-3 同震地下水位變化機制探討 60
5-3-1 大範圍地下水位變化情形 60
5-3-2 地下水位異常下降 62
5-4 地潮分析結果 68
第六章 結論與建議 75
6-1 結論 75
6-2 建議 76
參考文獻 78
附錄 85
參考文獻 [1] Cooper Jr, H. H., Bredehoeft, J. D., Papadopulos, I. S., & Bennett, R. R., "The response of well‐aquifer systems to seismic waves", Journal of Geophysical Research, 70(16), 3915-3926, 1965.

[2] Hsieh, P. A., Bredehoeft, J. D., & Farr, J. M., "Determination of aquifer transmissivity from Earth tide analysis", Water Resources Research, 23(10), 1824-1832, 1987.

[3] Wang, C. Y., Liao, X., Wang, L. P., Wang, C. H., & Manga, M., "Large earthquakes create vertical permeability by breaching aquitards", Water Resources Research, 52(8), 5923-5937, 2016.

[4] Eaton, J., & Takasaki, K., "Seismological interpretation of earthquake-induced water-level fluctuations in wells", Bulletin of the Seismological Society of America, 49(3), 227-245, 1959.

[5] 賴文基,「地震引致地下水位變化機制之研究」,國立成功大學,博士論文,2010。

[6] Wakita, H., "Water wells as possible indicators of tectonic strain", Science, 189(4202), 553-555, 1975.

[7] Roeloffs, E., "Poroelastic techniques in the study of earthquake-related hydrologic phenomena", Advances in geophysics, 37, 135-195, 1996.

[8] Jónsson, S., Segall, P., Pedersen, R., & Björnsson, G., "Post-earthquake ground movements correlated to pore-pressure transients", Nature, 424(6945), 179-183, 2003.

[9] Chia, Y., Chiu, J. J., Chiang, Y.-H., Lee, T.-P., Wu, Y.-M., & Horng, M.-J., "Implications of coseismic groundwater level changes observed at multiple-well monitoring stations", Geophysical Journal International, 172(1), 293-301, 2008.

[10] Rice, J. R., & Cleary, M. P., "Some basic stress diffusion solutions for fluid‐saturated elastic porous media with compressible constituents", Reviews of Geophysics, 14(2), 227-241, 1976.

[11] Vucetic, M., "Cyclic threshold shear strains in soils", Journal of Geotechnical engineering, 120(12), 2208-2228, 1994.

[12] Hsu, C.-C., & Vucetic, M., "Volumetric threshold shear strain for cyclic settlement", Journal of geotechnical geoenvironmental engineering, 130(1), 58-70, 2004.

[13] Brodsky, E. E., Roeloffs, E., Woodcock, D., Gall, I., & Manga, M., "A mechanism for sustained groundwater pressure changes induced by distant earthquakes", Journal of Geophysical Research: Solid Earth, 108(B8), 2003.

[14] Kinoshita, C., Kano, Y., & Ito, H., "Shallow crustal permeability enhancement in central Japan due to the 2011 Tohoku earthquake", Geophysical Research Letters, 42(3), 773-780, 2015.

[15] Wang, C.-Y., & Manga, M., Earthquakes And Water. Springer, Berlin, 2009.

[16] Wang, C.-Y., Cheng, L.-H., Chin, C.-V., & Yu, S.-B., "Coseismic hydrologic response of an alluvial fan to the 1999 Chi-Chi earthquake, Taiwan", Geology, 29(9), 831-834, 2001.

[17] Rojstaczer, S., & Wolf, S., "Permeability changes associated with large earthquakes: An example from Loma Prieta, California", Geology, 20(3), 211-214, 1992.

[18] Muir‐Wood, R., & King, G. C., "Hydrological signatures of earthquake strain", Journal of Geophysical Research: Solid Earth, 98(B12), 22035-22068, 1993.

[19] Wang, C.-Y., Wang, C.-H., & Manga, M., "Coseismic release of water from mountains: Evidence from the 1999 (Mw= 7.5) Chi-Chi, Taiwan, earthquake", Geology, 32(9), 769-772, 2004.

[20] King, C.-Y., & Chia, Y., "Anomalous streamflow and groundwater-level changes before the 1999 M7. 6 Chi–Chi Earthquake in Taiwan: Possible mechanisms", Pure Applied Geophysics, 175(7), 2435-2444, 2018.

[21] Briggs, R. O., "Effects of Loma Prieta earthquake on surface waters in Waddell Valley 1", Journal of the American Water Resources Association, 27(6), 991-999, 1991.

[22] Tokunaga, T., "Modeling of earthquake-induced hydrological changes and possible permeability enhancement due to the 17 January 1995 Kobe Earthquake, Japan", Journal of Hydrology, 223(3-4), 221-229, 1999.

[23] Manga, M., "Origin of postseismic streamflow changes inferred from baseflow recession and magnitude‐distance relations", Geophysical Research Letters, 28(10), 2133-2136, 2001.

[24] Montgomery, D. R., & Manga, M., "Streamflow and water well responses to earthquakes", Science, 300(5628), 2047-2049, 2003.

[25] 馬國鳳,「台灣地震科學中心十周年記者會討論」,2015。

[26] Wu, B. R., Huang, M. W., Ke, S. S., & Lee, W. S., "Mesh-Based soil liquefaction analysis for emergency response-case study of the Meinong earthquake in Taiwan", 2017.

[27] 台灣地區寬頻地震網, http://bats.earth.sinica.edu.tw/.

[28] 中央氣象局地震測報中心, https://scweb.cwb.gov.tw/.

[29] 中央地質調查所,20160206地震地質調查報告,2016。

[30] 國家災害防救科技中心、國家地震工程研究中心,0206地震災情彙整與實地調查報告,2016。

[31] 中央地質調查所土壤液化潛勢查詢系統, https://www.liquid.net.tw/cgs/public/index.html.

[32] Lu, C.-C., Hwang, J.-H., & Hsu, S.-Y., "The impact evaluation of soil liquefaction on low-rise building in the Meinong earthquake", Earth, Planets Space, 69(1), 109, 2017.

[33] 經濟部中央地質調查所,20100304地震地質調查報告,2010。

[34] 國立成功大學防災研究中心,0206美濃地震災害概況,2016。

[35] 陳文山、俞何興、俞震甫、鍾孫霖、林正洪、林啟文、游能悌、吳逸民和王國龍,台灣地質概論,中華民國地質學會,2016。

[36] 陳文山、黃能偉、楊志成,「台灣西南部更新世沉積層序特性與前陸盆地演化」,經濟部中央地質調查所特刊, 1-38頁,2011。

[37] 何春蓀,台灣地質概論: 台灣地質圖說明書,經濟部中央地質調查所,1994。

[38] 財團法人中興工程顧問社,「地下水水文地質與補注模式研究」—105 年度地下水主要補注區補充地質調查案,經濟部中央地質調查所,2016。

[39] 陳文山、楊志成、楊小青,「如何建立台灣海岸平原區地下晚第四紀沉積層的地層架構」,經濟部中央地質調查所特刊, 101-114頁,2009。

[40] 張麗旭、周敏和陳培源,「民國35年12月5日台南之地震」,台灣省地質調查所彙刊, 1947。

[41] 國立雲林科技大學水土資源及防災科技研究中心,台灣地區地下水觀測網整體計畫成果彙編(81~105),2017。

[42] 張健財、余貴坤,地下水水位變化與地震的關連性研究(Ⅲ),2012。

[43] Doodson, A. T., "VI. The analysis of tidal observations", Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 227(647-658), 223-279, 1928.

[44] 黃瓊珠、李汴軍和高家俊,「天文潮位資料補遺之探討」,氣象學報, 46(2), 15-28頁,2006。

[45] Cutillo, P. A., & Bredehoeft, J. D., "Estimating aquifer properties from the water level response to earth tides", Groundwater, 49(4), 600-610, 2011.

[46] Bredehoeft, J. D., "Response of well‐aquifer systems to earth tides", Journal of Geophysical Research, 72(12), 3075-3087, 1967.

[47] Hsieh, P. A., Bredehoeft, J. D., & Rojstaczer, S. A., "Response of well aquifer systems to earth tides: Problem revisited", Water Resources Research, 24(3), 468-472, 1988.

[48] Allègre, V., Brodsky, E. E., Xue, L., Nale, S. M., Parker, B. L., & Cherry, J. A., "Using earth‐tide induced water pressure changes to measure in situ permeability: A comparison with long‐term pumping tests", Water Resources Research, 52(4), 3113-3126, 2016.

[49] 逸奇資訊有限公司,地下水觀測與地質資料檢討分析水文地質參數-以屏東平原為例,經濟部水利署,2016。

[50] Tamura, Y., Sato, T., Ooe, M., & Ishiguro, M., "A procedure for tidal analysis with a Bayesian information criterion", Geophysical Journal International, 104(3), 507-516, 1991.

[51] Tamura, Y., & Agnew, D., "Baytap08 user′s manual", 2008.

[52] 石黒真木夫、佐藤忠弘、田村良明、大江昌嗣, "地球潮汐デ-タ解析--プログラム BAYTAP の紹介", 統計数理研究所彙報, 32(1), 71-85, 1984.

[53] Elkhoury, J. E., Brodsky, E. E., & Agnew, D. C., "Seismic waves increase permeability", Nature, 441(7097), 1135-1138, 2006.

[54] Doan, M.-L., & Brodsky, E. E., "Tidal analysis of water level in continental boreholes A tutorial Version 2.2", 2006.

[55] 産業技術総合研究所, https://gbank.gsj.jp/wellweb/GSJ/water/analysis/.

[56] Beaumont, C., & Berger, J., "An analysis of tidal strain observations from the United States of America: I. The laterally homogeneous tide", Bulletin of the Seismological Society of America, 65(6), 1613-1629, 1975.

[57] Matsumoto, N., & Roeloffs, E., "Hydrological response to earthquakes in the Haibara well, central Japan–II. Possible mechanism inferred from time-varying hydraulic properties", Geophysical Journal International, 155(3), 899-913, 2003.

[58] Jan, S., Chern, C. S., Wang, J., & Chao, S. Y., "The anomalous amplification of M2 tide in the Taiwan Strait", Geophysical Research Letters, 31(7), 2004.

[59] Shi, Z., & Wang, G., "Hydrological response to multiple large distant earthquakes in the Mile well, China", Journal of Geophysical Research: Earth Surface, 119(11), 2448-2459, 2014.

[60] Shi, Y., Liao, X., Zhang, D., & Liu, C. P., "Seismic waves could decrease the permeability of the shallow crust", Geophysical Research Letters, 46(12), 6371-6377, 2019.

[61] Lai, W.-C., Hsu, K.-C., Shieh, C.-L., Lee, Y.-P., Chung, K.-C., Koizumi, N., & Matsumoto, N., "Evaluation of the effects of ground shaking and static volumetric strain change on earthquake-related groundwater level changes in Taiwan", Earth, planets and Space, 62(4), 391-400, 2010.

[62] Wang, C.-Y., Wong, A., Dreger, D. S., & Manga, M., "Liquefaction limit during earthquakes and underground explosions: implications on ground-motion attenuation", Bulletin of the Seismological Society of America, 96(1), 355-363, 2006.

[63] Midorikawa, S., & Wakamatsu, K., "Intensity of earthquake ground motion at liquefied sites", Soils and Foundations, 28(2), 73-84, 1988.

[64] Wong, A., & Wang, C. Y., "Field relations between the spectral composition of ground motion and hydrological effects during the 1999 Chi‐Chi (Taiwan) earthquake", Journal of Geophysical Research: Solid Earth, 112(B10), 2007.

[65] Steketee, J. A., "On Volterra′s dislocations in a semi-infinite elastic medium", Canadian Journal of Physics, 36(2), 192-205, 1958.

[66] Okada, Y., "Internal deformation due to shear and tensile faults in a half-space", Bulletin of the Seismological Society of America, 82(2), 1018-1040, 1992.

[67] Lee, S. J., Yeh, T. Y., & Lin, Y. Y., "Anomalously large ground motion in the 2016 ML 6.6 Meinong, Taiwan, earthquake: A synergy effect of source rupture and site amplification", Seismological Research Letters, 87(6), 1319-1326, 2016.

[68] Wen, S., Yeh, Y.-L., Chang, Y.-Z., & Chen, C.-H., "The seismogenic process of the 2016 Meinong earthquake, southwest Taiwan", Terrestrial, Atmospheric Oceanic Sciences, 28(5), 2017.

[69] Koizumi, N., Lai, W. C., Kitagawa, Y., & Matsumoto, N., "Comment on “Coseismic hydrological changes associated with dislocation of the September 21, 1999 Chichi earthquake, Taiwan” by Min Lee et al", Geophysical Research Letters, 31(13), 2004.
指導教授 王士榮(Shih-Jung Wang) 審核日期 2020-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明