博碩士論文 107626001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.237.94.109
姓名 葉正陽(Cheng-Yang Yeh)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 無人機光達系統應用於沙岸與藻礁地區之波浪能量消散之研究
(A UAV-RTK-Lidar System measurements of wave energy dissipation over a sandy beach and an algal-reef area)
相關論文
★ 藻礁區的波浪頻譜消散特性★ 應用聲學及光學儀器在均勻及現場懸浮質濃度之量測率定及比較
★ 碎波帶紊流及剪應力之大尺度實驗觀測研究★ 不均勻珊瑚礁分佈對珊瑚礁冠層附近流場結構之影響
★ 藻礁區之波浪消散特性★ 利用影像處理技術辨識藻礁範圍
★ 桃園海岸近岸流之數值模擬★ 桃園海岸近岸流四季變化之研究
★ 桃園海岸海漂垃圾現場調查分析之研究★ 桃園新屋海岸波流受海工結構物設置之數值模擬研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 波浪能量消散會直接影響近岸的水動力分佈、造成地形變化與影響生態系,因此計算近岸的波浪能量消散非常重要。計算波浪能量消散,需要精準測量空間上不同點位的水深時序列資料,然而傳統上無法快速大範圍佈放壓力計,精準度也有其不足之處,因此計算其能量消散有難度。光達測距儀為另一種測量水位的儀器,隨著無人機產業和科技發展不斷進步,無人機已應用諸多海洋觀測和研究領域,然而無人機受限於低酬載重量,光達測距儀鮮少被裝載在無人機上。本研究使用一台輕量化、低成本和高效率的光達無人機,量測藻礁海岸與沙岸的波浪能量消散,並在觀測同時,在底部佈放壓力計與無人機資料做比較。本研究在藻礁海岸使用光達無人機八個小時內執行了九次量測,涵蓋一個漲潮潮汐;在沙岸七個小時內執行了八次量測,涵蓋一個漲潮潮汐。我們用壓力計比較無人機量測的水深、示性波高、波浪週期和波浪能量通率,得到兩者之間的水深均方根在藻礁海岸為3公分,在沙岸為9公分;兩者之間的示性波高均方根在藻礁海岸為4公分,在沙岸為9公分,證實無人機測量誤差小。無人機測量波浪能量消散結果,在藻礁區觀測到的總能量消散低於5 Wm-1,在沙岸區域低於15 Wm-1,總能量消散隨著潮汐增高而減少。本研究也使用無人機光達系統量測底床粗糙度,並量化摩擦能量消散,藻礁區摩擦消散占總消散能量比例大於70%,然而沙岸區僅有42%。從碎波指標發現,沙岸區域發生碎波的次數較藻礁區多,在沙岸區的參數化碎波能量消散比藻礁海岸多。得到結果,摩擦消散為藻礁海岸主要的波浪能量消散來源,碎波消散為沙岸波浪能量消散來源。本系統的優點為提供一個有效且精準地量測海岸波浪能量消散方法,並能找出主要能量消散來源。
摘要(英) Wave energy dissipation is a significant factor affecting coastal hydrodynamics, morphology, and ecology. However, it is difficult to be measured since accurate and spatial-distributed measurements of sea surface elevations are required to compute this quantity. Unmanned Aerial Vehicles (UAVs) have been widely used for coastal applications due to its efficiency. However, the usage of Light Detection and Ranging (Lidar) on UAVs is limited by the low payload of UAVs. A lightweight, low-cost, and compact UAV-RTK-Lidar system developed by Huang et al. (2018) was used to test the possibility for measurements of wave energy dissipation. Two field experiments of measuring energy dissipation over algal-reef and sandy beach site were conducted. Nine and eight flights of UAV measurements on the algal reef and sandy beach were conducted in 8 and 7 hours for one tidal cycle. The measurements of wave properties such as the wave height, wave period and wave energy flux by UAV were compared with those of in-situ instruments using pressure sensors. The Root Mean Square (RMS) errors for measurements of water depth and significant wave height between the two techniques are 3 cm and 9 cm over the algal reef and are 4 cm and 9 cm over the sandy beach, respectively. The results measured by UAV-lidar system is consistent with these using bottom-mounted pressure sensors. The results of wave energy dissipation over the algal reef are within 5 Wm-1 and are within 15 Wm-1 over the sandy beach. The energy dissipation is higher at low tide, while it is lower at high tide. We also used the system to observe the bottom roughness at the two sites for quantifying the frictional dissipation. The results show that more than 70% of the total energy dissipation is attributed to the bottom friction on the algal reef, while that is only 42% on the sandy beach. UAV-recorded images were analysed to determine the breaking conditions on the sea surface. Wave breaking occurs more frequently on the sandy beach than that on the algal reef. The UAV-lidar system provides a great potential to quantify the wave energy dissipation remotely and efficiently in fields.
關鍵字(中) ★ 波浪能量消散
★ 藻礁
★ 底床粗糙度
★ 無人機
關鍵字(英) ★ Wave Energy Dissipation
★ Algal Reef
★ Bottom Roughness
★ Unmanned Aerial Vehicle
論文目次 摘要 i
Abstract iii
Acknowledgment v
Table of Content vi
List of Figures viii
List of Tables x
Chapter 1 : Introduction 1
1.1 Overview of Wave Energy Dissipation 1
1.2 Overview of Unmanned Aerial Vehicle 2
1.3 UAVs’ Regulations of Nowadays 4
1.4 Overview of Algal Reef 6
1.5 Significances of the Present Study 7
1.6 Objectives of the Present Study 9
Chapter 2 : Literature review 10
2.1 Wave Energy Dissipation 10
2.2 Applications of Airborne Lidar Systems 14
2.3 Applications of UAV 16
Chapter 3 : Methodology 21
3.1 Components of UAV-RTK-Lidar System 21
3.2 Field Descriptions 24
3.3 Field Measurements 25
3.3.1 Measurements in the algal-reef area 26
3.3.2 Measurements in the sandy beach 27
3.4 Waves Analysis 29
3.5 Parameterization 31
3.5.1 Parameterization of frictional dissipation 31
3.5.2 Parameterization of dissipation due to waves breaking 33
3.6 Image-based Breaking Index 34
3.7 Calculations of Roughness 35
Chapter 4 : Results 36
4.1 The Observations of Return Rate 36
4.2 The Results of Algal-reef Area 37
4.2.1 Comparisons between UAV and in-situ measurements at algal-reef area 37
4.2.2 Wave conditions over the algal reef 38
4.2.3 Breaking index of the algal reef 39
4.2.4 Dissipation of waves energy on the algal-reef area 40
4.2.5 The roughness of algal reef 42
4.2.6 Parameterization of energy dissipation at the algal reef 43
4.3 The Results of Sandy-beach Area 44
4.3.1 Comparisons between UAV and in-situ measurements at sandy-beach area 44
4.3.2 Wave conditions over the sandy beach 45
4.3.3 Breaking index of the sandy beach 47
4.3.4 Dissipation of waves energy on the sandy beach 48
4.3.5 The roughness of sandy beach 49
4.3.6 Parameterization of energy dissipation at the sandy beach 50
Chapter 5 : Discussion 51
5.1 Quantifications of System Error 51
5.2 Negative Wave Energy Dissipation at High Tide Condition over the Algal Reef and Sandy Beach 52
5.3 Characteristic Between the Algal-reef and Sandy-beach Site 55
Chapter 6 : Conclusions and Suggestions 56
6.1 Conclusions 56
6.2 Future Suggestions 58
Appendix 58
References 59
參考文獻 Adey, W. H. and J. M. Vassar (1975). "Colonization, succession and growth rates of tropical crustose coralline algae (Rhodophyta, Cryptonemiales)." Phycologia 14(2): 55-69.
Ainsworth, C. H. and P. J. Mumby (2015). "Coral-algal phase shifts alter fish communities and reduce fisheries production." Global change biology 21(1): 165-172.
Baird, M. E. and M. J. Atkinson (1997). "Measurement and prediction of mass transfer to experimental coral reef communities." Limnology and Oceanography 42(8): 1685-1693.
Baldock, T. E., P. Holmes, S. Bunker and P. Van Weert (1998). "Cross-shore hydrodynamics within an unsaturated surf zone." Coastal Engineering 34(3): 173-196.
Bamber, J. L., S. Ekholm and W. B. Krabill (2001). "A new, high-resolution digital elevation model of Greenland fully validated with airborne laser altimeter data." Journal of Geophysical Research: Solid Earth 106(B4): 6733-6745.
Bandini, F., J. Jakobsen, D. Olesen, J. A. Reyna-Gutierrez and P. Bauer-Gottwein (2017). "Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles." Journal of Hydrology 548: 237-250.
Battjes, J. A. and J. P. F. M. Janssen (1978). "Energy Loss and Set-up due to Breaking of Random Waves." 1978(16).
Benjamin D.R., L. L., David C., W. Kendall M. (2009). "A Portable Airborne Scanning Lidar System for Ocean and Coastal Applications." Atmos. Ocean. Technol. 26: 2626-2641.
Bilger, R. W. and M. J. Atkinson (1992). "Anomalous mass transfer of phosphate on coral reef flats." Limnology and Oceanography 37(2): 261-272.
Boyd, C. E. (1973). "Biotic Interactions between Different Species of Algae." Weed Science 21(1): 32-37.
Buddemeier, R. W. and S. V. Smith (1988). "Coral reef growth in an era of rapidly rising sea level: predictions and suggestions for long-term research." Coral Reefs 7(1): 51-56.
Casella, E., A. Rovere, A. Pedroncini, C. P. Stark, M. Casella, M. Ferrari and M. Firpo (2016). "Drones as tools for monitoring beach topography changes in the Ligurian Sea (NW Mediterranean)." Geo-Marine Letters 36(2): 151-163.
Cawood, A. J., C. E. Bond, J. A. Howell, R. W. H. Butler and Y. Totake (2017). "LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models." Journal of Structural Geology 98: 67-82.
Center, H. (2000). Evaluation of Erosion Hazards, The H. John Heinz III Center for Science, Economics and the Environment.
Connell, J. H. (1978). "Diversity in Tropical Rain Forests and Coral Reefs." Science 199(4335): 1302-1310.
Cooper, N. J. (2005). "Wave Dissipation Across Intertidal Surfaces in the Wash Tidal Inlet, Eastern England." Journal of Coastal Research: 28-40.
Darwin, C. (2013). The Structure and Distribution of Coral Reefs: Being the First Part of the Geology of the Voyage of the Beagle, under the Command of Capt. Fitzroy, R.N. during the Years 1832 to 1836. Cambridge, Cambridge University Press.
Drazen, D. A., W. K. Melville and L. U. C. Lenain (2008). "Inertial scaling of dissipation in unsteady breaking waves." Journal of Fluid Mechanics 611: 307-332.
Epstein, N., R. P. M. Bak and B. Rinkevich (2003). "Applying forest restoration principles to coral reef rehabilitation." Aquatic Conservation: Marine and Freshwater Ecosystems 13(5): 387-395.
Flavia Tauro, M. P., Salvatore Grimaldi (2016). "Surface flow measurements from drones." Hydrology 540: 240-245.
Forsberg, R., K. Keller and S. M. Jacobsen (2001). Laser monitoring of ice elevations and sea-ice thickness in Greenland.
Friedman, R. M., V. D. Stephen and J. M. William, Jr. (2002). "Summary of the Heinz Center Report on Coastal Erosion and the National Flood Insurance Program." Journal of Coastal Research 18(3): 568-575.
Gerritsen, F. (1980). "Wave Attenuation and Wave Set-up on a Coastal Reef." 1980(17).
Gonçalves, J. A. and R. Henriques (2015). "UAV photogrammetry for topographic monitoring of coastal areas." ISPRS Journal of Photogrammetry and Remote Sensing 104: 101-111.
Gourlay, M. R. (1994). "Wave transformation on a coral reef." Coastal Engineering 23(1): 17-42.
Hardy, T. A. (1993). The attenuation and sppectral transformation of wind waves on a coral reef. Department of Civil and System Engineering, James Cook University, Townsville, Queensland, Australia, Department of Civil and System Engineering: 336.
Hardy, T. A. and I. R. Young (1996). "Field study of wave attenuation on an offshore coral reef." Journal of Geophysical Research: Oceans 101(C6): 14311-14326.
Hasselmann, K. (1962). "On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory." Journal of Fluid Mechanics 12(4): 481-500.
Hearn, C. J., M. J. Atkinson and J. Falter (2001). A physical derivation of nutrient-uptake rates in coral reefs: Effects of roughness and waves.
Hearn, C. J. and B. J. Robson (2000). "Modelling a bottom diurnal boundary layer and its control of massive alga blooms in an estuary." Applied Mathematical Modelling 24(11): 843-859.
Hilary, F. S., H. S. Asbury, Jr., H. L. Jeffrey and A. H. Rob (2002). "Estimation of Shoreline Position and Change Using Airborne Topographic Lidar Data." Journal of Coastal Research 18(3): 502-513.
Hoegh-Guldberg, O., P. J. Mumby, A. J. Hooten, R. S. Steneck, P. Greenfield, E. Gomez, C. D. Harvell, P. F. Sale, A. J. Edwards, K. Caldeira, N. Knowlton, C. M. Eakin, R. Iglesias-Prieto, N. Muthiga, R. H. Bradbury, A. Dubi and M. E. Hatziolos (2007). "Coral Reefs Under Rapid Climate Change and Ocean Acidification." Science 318(5857): 1737-1742.
Hokuyo, H. A. C. (2012). "Scanning laser range finder UTM-30LX: Specification.": 6.
Holman, R. A., K. L. Brodie and N. J. Spore (2017). "Surf Zone Characterization Using a Small Quadcopter: Technical Issues and Procedures." IEEE Transactions on Geoscience and Remote Sensing 55(4): 2017-2027.
Hsu, H.-J. (2013). Wave dissipation over an algal reef. Master Degree, National Central University.
Huang, Z.-C., L. Lenain, W. K. Melville, J. H. Middleton, B. Reineman, N. Statom and R. M. McCabe (2012). "Dissipation of wave energy and turbulence in a shallow coral reef lagoon." Journal of Geophysical Research: Oceans 117(C3).
Huang, Z.-C., B. D. Reineman, L. Lenain, W. K. Melville and J. H. Middleton (2012). "Airborne lidar measurements of wave energy dissipation in a coral reef lagoon system." Journal of Geophysical Research: Oceans 117(C3).
Huang, Z. C., C. Y. Yeh, K. H. Tseng and W. Y. Hsu (2018). "A UAV-RTK Lidar System for Wave and Tide Measurements in Coastal Zones." Journal of Atmospheric and Oceanic Technology 35(8): 1557-1570.
Hughes, T. P., A. H. Baird, D. R. Bellwood, M. Card, S. R. Connolly, C. Folke, R. Grosberg, O. Hoegh-Guldberg, J. B. C. Jackson, J. Kleypas, J. M. Lough, P. Marshall, M. Nyström, S. R. Palumbi, J. M. Pandolfi, B. Rosen and J. Roughgarden (2003). "Climate Change, Human Impacts, and the Resilience of Coral Reefs." Science 301(5635): 929-933.
Hwang, P. A., D. W. Wang, E. J. Walsh, W. B. Krabill and R. N. Swift (2000). "Airborne Measurements of the Wavenumber Spectra of Ocean Surface Waves. Part I: Spectral Slope and Dimensionless Spectral Coefficient." Journal of Physical Oceanography 30(11): 2753-2767.
Jaakkola, A., J. Hyyppä, A. Kukko, X. Yu, H. Kaartinen, M. Lehtomäki and Y. Lin (2010). "A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements." ISPRS Journal of Photogrammetry and Remote Sensing 65(6): 514-522.
Janssen, T. T. and J. A. Battjes (2007). "A note on wave energy dissipation over steep beaches." Coastal Engineering 54(9): 711-716.
Johnson, K., E. Nissen, S. Saripalli, A. J.R., M. P., K. Scharer, P. Williams and K. Blisniuk (2014). "Rapid mapping of ultrafine fault zone topography with structure from motion." Geosphere 10(5): 969-986.
K. Melville, W., L. Romero and J. M. Kleiss (2005). Extreme wave events in the Gulf of Tehuantepec.
Kiessling, W. (2001). Paleoclimatic significance of Phanerozoic reefs.
Krabill, W. B., W. Abdalati, E. B. Frederick, S. S. Manizade, C. F. Martin, J. G. Sonntag, R. N. Swift, R. H. Thomas and J. G. Yungel (2002). "Aircraft laser altimetry measurement of elevation changes of the greenland ice sheet: technique and accuracy assessment." Journal of Geodynamics 34(3): 357-376.
Krabill, W. B., R. H. Thomas, C. F. Martin, R. N. Swift and E. B. Frederick (1995). "Accuracy of airborne laser altimetry over the Greenland ice sheet." International Journal of Remote Sensing 16(7): 1211-1222.
Lee, T. T. and K. P. Black (1978). "The energy spectra of surf waves on a coral reef." 1978(16).
Leichter, J. J., G. B. Deane and M. D. Stokes (2005). "Spatial and Temporal Variability of Internal Wave Forcing on a Coral Reef." Journal of Physical Oceanography 35(11): 1945-1962.
Leon, J. X., C. M. Roelfsema, M. I. Saunders and S. R. Phinn (2015). "Measuring coral reef terrain roughness using ‘Structure-from-Motion’ close-range photogrammetry." Geomorphology 242: 21-28.
Lin, Z.-M. (2014). Spectral wave dissipation over an algal reef. Master Degree, National Central University.
Lowe, D. G. (1999). Object recognition from local scale-invariant features. Proceedings of the Seventh IEEE International Conference on Computer Vision.
Lowe, R. J., J. L. Falter, M. D. Bandet, G. Pawlak, M. J. Atkinson, S. G. Monismith and J. R. Koseff (2005). "Spectral wave dissipation over a barrier reef." Journal of Geophysical Research: Oceans 110(C4).
Madsen, O. S. (1994). "Spectral Wave-current Bottom Boundary Layer Flows." 1994(24).
Mathisen, P. P. and O. S. Madsen (1996). "Waves and currents over a fixed rippled bed: 1. Bottom roughness experienced by waves in the presence and absence of currents." Journal of Geophysical Research: Oceans 101(C7): 16533-16542.
Mathisen, P. P. and O. S. Madsen (1999). "Waves and currents over a fixed rippled bed: 3. Bottom and apparent roughness for spectral waves and currents." Journal of Geophysical Research: Oceans 104(C8): 18447-18461.
Matsuba, Y., S. Sato and K. Hadano (2016). "Application of UAV based nearshore topography monitoring to a sandy-bypassed beach on Fukude-Asaba coast in Shizuoka Prefecture." Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering) 72(2): I_853-I_858.
McCormick, M. (1994). Comparison of field methods for measuring surface topography and their associations with a tropical reef fish assemblage.
Moberg, F. and C. Folke (1999). "Ecological goods and services of coral reef ecosystems." Ecological Economics 29(2): 215-233.
Mork, M. (1996). "The effect of kelp in wave damping." Sarsia 80(4): 323-327.
Mumby, P. J. (2009). "Phase shifts and the stability of macroalgal communities on Caribbean coral reefs." Coral Reefs 28(3): 761-773.
Mumby, P. J., A. Hastings and H. J. Edwards (2007). "Thresholds and the resilience of Caribbean coral reefs." Nature 450: 98.
Munk, W. H. and M. C. Sargent (1948). "Adjustment of Bikini Atoll to ocean waves." Eos, Transactions American Geophysical Union 29(6): 855-860.
Nelson, R. C. (1996). "Hydraulic roughness of coral reef platforms." Applied Ocean Research 18(5): 265-274.
Newell, N. D. (1971). "An Outline History of Tropical Organic Reefs." American Museum Novitates 2465.
Nielsen, P. (1992). Coastal Bottom Boundary Layers and Sediment Transport.
NovAtel (2016). "OEM6 family installation and operation user manual." Revision 12, NovAtel Inc. Publ. OM-20000128: 208.
Nunes, V. and G. Pawlak (2008). "Observations of Bed Roughness of a Coral Reef." Journal of Coastal Research 24(2A): 39-50.
Odum, H. T. and E. P. Odum (1955). "Trophic Structure and Productivity of a Windward Coral Reef Community on Eniwetok Atoll." Ecological Monographs 25(3): 291-320.
Ole Secher, M., P. Ying-Keung and C. G. Hans (1988). "Spectral Wave Attenuation by Bottom Friction: Theory." Coastal Engineering Proceedings 1(21).
Peebles, R. G. (1993). "Coralline algal reef flat trottoir southern Arabian Gulf Abu Dhabi Emirate." Coral Reefs 12(1): 18-18.
Pomeroy, L. R. (1970). "The Strategy of Mineral Cycling." Annual Review of Ecology and Systematics 1: 171-190.
Reineman, B. D., L. Lenain, D. Castel and W. K. Melville (2009). "A Portable Airborne Scanning Lidar System for Ocean and Coastal Applications." Journal of Atmospheric and Oceanic Technology 26(12): 2626-2641.
Riding, R. (2002). "Structure and composition of organic reefs and carbonate mud mounds: concepts and categories." Earth-Science Reviews 58(1): 163-231.
Roberts, H. H. and J. N. Suhayda (1983). "Wave-current interactions on a shallow reef (Nicaragua, Central America)." Coral Reefs 1(4): 209-214.
Romero, L. and W. K. Melville (2010). "Airborne Observations of Fetch-Limited Waves in the Gulf of Tehuantepec." Journal of Physical Oceanography 40(3): 441-465.
Ruessink, B. G. (2010). "Observations of Turbulence within a Natural Surf Zone." Journal of Physical Oceanography 40(12): 2696-2712.
Sallenger, A. H., Jr., W. B. Krabill and R. N. Swift (2003). "Evaluation of Airborne Topographic Lidar for Quantifying Beach Changes." Journal of Coastal Research 19(1): 125-133.
Sankey, T., J. Donager, J. McVay and J. B. Sankey (2017). "UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA." Remote Sensing of Environment 195: 30-43.
Shemdin, O., K. Hasselmann, S. V. Hsiao and K. Herterich (1978). Nonlinear and Linear Bottom Interaction Effects in Shallow Water. Turbulent Fluxes Through the Sea Surface, Wave Dynamics, and Prediction. A. Favre and K. Hasselmann. Boston, MA, Springer US: 347-372.
Swart, D. H. (1974). Offshore sediment transport and equilibrium beach profiles. Doctoral Doctoral thesis, Delft University.
Tait, R. J. (1972). "Wave set-up on coral reefs." Journal of Geophysical Research (1896-1977) 77(12): 2207-2211.
Thomas, F. I. M. and M. J. Atkinson (1997). "Ammonium uptake by coral reefs: Effects of water velocity and surface roughness on mass transfer." Limnology and Oceanography 42(1): 81-88.
Thornton, E. B. and R. T. Guza (1983). "Transformation of wave height distribution." Journal of Geophysical Research: Oceans 88(C10): 5925-5938.
Tschirky, P., K. Hall and D. Turcke (2001). Wave Attenuation by Emergent Wetland Vegetation. Coastal Engineering 2000: 865-877.
Turner, D., A. Lucieer and C. Watson (2012). "An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds." Remote Sensing 4(5): 1392-1410.
Turner, I. L., M. D. Harley and C. D. Drummond (2016). "UAVs for coastal surveying." Coastal Engineering 114: 19-24.
van der Veen, C. J., W. B. Krabill, B. M. Csatho and J. F. Bolzan (1998). "Surface roughness on the Greenland Ice Sheet from airborne laser altimetry." Geophysical Research Letters 25(20): 3887-3890.
Vasuki, Y., E.-J. Holden, P. Kovesi and S. Micklethwaite (2013). A geological structure mapping tool using photogrammetry.
Vrbancich, J., W. Lieff and J. Hacker (2011). "Demonstration of Two Portable Scanning LiDAR Systems Flown at Low-Altitude for Investigating Coastal Sea Surface Topography." Remote Sensing 3(9): 1983-2001.
Wallace, L., A. Lucieer, C. Watson and D. Turner (2012). "Development of a UAV-LiDAR System with Application to Forest Inventory." Remote Sensing 4(6): 1519-1543.
Wallace, L., R. Musk and A. Lucieer (2014). "An Assessment of the Repeatability of Automatic Forest Inventory Metrics Derived From UAV-Borne Laser Scanning Data." IEEE Transactions on Geoscience and Remote Sensing 52(11): 7160-7169.
Wood, R. (1995). "The Changing Biology of Reef-Building." PALAIOS 10(6): 517-529.
Zwarts, C. M. G. (1974). "A Transmission Line Wave Height Transducer." 1974(14).
指導教授 黃志誠(Zhi-Cheng Huang) 審核日期 2019-12-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明