博碩士論文 107690605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.118.184.237
姓名 Yonatan Garkebo Doyoro(Yonatan Garkebo Doyoro)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 地電阻剖面影像法之不確定性評估
(Uncertainty Assessment of Geophysical Electrical Resistivity Imaging Methods)
相關論文
★ 宜蘭三星清水地區現地應力與斷層再活動分析★ 地面-井下地電阻影像法之空間解析度與成像能力分析
★ 運用地電阻影像法估算非受壓含水層之水頭及比出水率: 位於台灣中部,台中-南投地盆地沿烏溪河之研究案例★ 應用二維地電阻法推估名竹盆地淺層含水層水位變化及比出水率
★ 運用二維地電阻影像法推估屏東平原扇頂地區非拘限含水層在乾濕季之地下水位變化及比出水率★ 辨識大地地磁法現地施測之噪訊:以台灣花蓮地區為案例
★ 運用大地電磁法探討北部屏東平原地下構造★ 應用二維地電阻法推估蘭陽平原扇頂地區淺層地下水位面於乾溼季的變化量及比出水率
★ 時間域電磁波方法在雲林地區濁水溪沖積扇中下游水文地質結構測勘之應用★ 運用機器學習進行地球物理數據分析:地電阻與透地雷達方法中的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地電阻影像剖面法(Electrical Resistivity Imaging Method, ERI)是一種有效重現地下電性構造的技術,但要取得準確的電阻率模型仍具有挑戰性。本研究估算電阻率不確定性並評估常用陣列的對於模型的重現能力:雙偶極(Dipole-Dipole, DD)、單偶極(Pole-Dipole, PD)、溫奈施朗卜吉(Wenner-Schlumberger, WS)及單極法(Pole-Pole, PP)。本研究運用Python模組程式評估各陣列的性能,並進行聯合反演算,降低單一方法的固有不確定性。本研究運用殘差、重複誤差及潛在雜訊、人造物、反演算誤差和模型精度影響評估地電阻量測及模型不確定性。此外,也使用棋盤格模型測試評估空間分辨率和對電阻率擾動的靈敏度,並根據調查深度 (Depth of Investigation, DOI)、異常分析、統計方差和圖像相關性來檢查陣列成像效率。本研究對三相狀態的飽和沉積物(如固體岩石基質、液態水和空氣)進行了 ERI 和 SRT 提供的岩石物理進行聯合反演。ERI 測量不確定性結果顯示,旱季有約 3.2%、濕季有 0.83% 的資料點會高於重複性誤差的3%臨界值,一般來說,在乾季狀態下的地電阻量測會有較高的接地電阻、重複性誤差及殘餘物差,進而造成較多被排除使用的資料點。DOI指數表示模型重現的真實程度,DOI 的閾值深度會隨測量雜訊增加和測量深度改變而減少。基於實驗中的空洞目標物及模型模擬結果顯示,對於較淺的空洞目標物(2.2公尺深),DD陣列的結果有最高的異常效應(1.46)及電阻率變化(24400 .m),PP陣列則有最低的異常效應(0.6)及電阻率變化(2401.m)。反演模型顯示在更深的模型,其解析度和精準度會下降,從而在電阻率模型解釋上產生分歧。本研究推斷 DD 陣列最適合地下目標研究,PD 及WS陣列同樣足夠作為探索目標結構物,然而PP陣列則最為不適合。研究結果顯示,在所有測試的反演模組中(pyGIMLi、BERT、ResIPy 和 SimPEG),較大的異常目標都得能正確解析,然而,在深度3公尺所設置的目標半徑小於 0.5 公尺時,上述模組並沒有顯示任何目標特徵 。以 pyGIMLi、BERT 和 SimPEG 而言,可以重現大於其深度四分之一的目標直徑,而 ResIPy 可以重現大於其深度三分之一倍的目標直徑。 另外,ERT 和 SRT 的聯合反演則充分重現結構,減少了模型的歧義。總體而言,本研究探討了 ERT 測量和模型不確定性,並概述了能有效成像的陣列和反演模組,顯示使用聯合反演算和約束反演算對單一方法的約束,建議未來的將此方法作為應用。
摘要(英) Although electrical resistivity imaging (ERI) methods are effective for recovering subsurface structures, obtaining an accurate resistivity model is challenging. This study evaluates the recoverability and resistivity uncertainty of commonly used imaging arrays such as dipole-dipole (DD), pole-dipole (PD), Wenner-Schlumberger (WS), and pole-pole (PP). The study also evaluates the performance of free Python-based inversion software and employs joint inversion to reduce the inherent uncertainty of the single method. The resistivity measurement and model uncertainties are investigated using reciprocal error, repeatability error, potential noise, artificial effect, inversion data misfit, and model accuracy. Checkerboard tests are also used to evaluate spatial resolution and sensitivity to resistivity perturbations. The depth of investigation (DOI), anomaly analysis, statistical variances, and image correlations are used to evaluate array imaging efficiencies. The study combines ERI and seismic refraction tomography (SRT) inversion for saturated sediments with three-phase volumetric fractions, such as solid rock matrix, liquid water, and air. According to the ERI measurement uncertainty result, approximately 3.2%t of the dry season datasets and 0.83% of the wet season datasets are above the 3% repeatability error cut-off values. In dry conditions, resistivity measurements generally show high contact resistance, repeatability, and reciprocal errors, resulting in significant data discarding. The DOI threshold depth decreases as measurement noise and survey depths increase. The DD array recovered the highest anomaly index (1.46) and variance (24400 .m) in resistivity data, whereas the PP array recovered the lowest anomaly index (0.60) and variance (2401 .m) for the shallowest target cavity set at 2.2 m depth. At deeper depths, the inverted models exhibit a reduction in model resolution and accuracy, resulting in ambiguity in resistivity model interpretations. Our study shows that the DD array is best suited for subsurface target research. The PD and WS arrays are adequate for surveying target structures, while the PP array is the least suitable. The study results show that while all of the tested inversion freeware packages (pyGIMLi, BERT, ResIPy, and SimPEG) correctly resolve larger anomaly targets, they do not display any signatures for target radius less than 0.5 m set at 3 m depth. ResIPy can reproduce a target diameter greater than one-fourth of its depth, while pyGIMLi, BERT, and SimPEG can recover a target diameter greater than one-fourth of its depth. Furthermore, the joint inversion of ERI and SRT recovered the layer structures adequately, reducing model ambiguity. Overall, this study addresses ERI measurement and model uncertainties, describes effective imaging arrays and inversion freeware packages, and demonstrates single method constraints using joint inversion and constrained inversion, recommending them for future applications.
關鍵字(中) ★ 地電阻影像剖面法
★ 量測陣列
★ 數值模型
★ 不確定性
★ 開放式反演算軟體
★ 聯合反演算
關鍵字(英) ★ Electrical Resistivity Imaging
★ Measurement
★ Imaging Arrays
★ Keywords: Electrical Resistivity Imaging, Measurement, Imaging Arrays, Numerical Modelling
★ Uncertainty
★ Inversion Freeware
論文目次 摘要 ii
ABSTRACT iii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENT v
LIST OF FIGURES viii
CHAPTER ONE 1
INTRODUCTION AND SCOPE OF THE STUDY 1
1.1 Introduction 1
1.2 Aim of this thesis 5
1.3 Structure of the thesis 6
CHAPTER TWO 7
BACKGROUND STUDIES OF THE ELECTRICAL RESISTIVITY METHOD 7
2.1 Introduction 7
2.2 Basic principle 7
2.2.1 One-dimensional resistivity survey 11
2.2.2 Two-dimensional resistivity survey 12
2.2.3 Three-dimensional resistivity survey 13
2.2.4 Common imaging methods 14
2.2.5 The electrical property of subsurface material 17
CHAPTER THREE 21
FORWARD AND INVERSE MODELLING 21
3.1 Background 21
3.2 Forward modelling 21
3.3 Inverse modelling 22
CHAPTER FOUR 28
MEASUREMENT UNCERTAINTY AND ITS PROPAGATION ON THE INVERTED MODEL 28
4.1 Background 28
4.2 Approaches 30
4.3 Results and discussion 32
4.3.1 Measurement noise 32
4.3.1.1 Contact resistance 32
4.3.1.2 Repeatability error 33
4.3.1.3 Reciprocal error 34
4.3.1.4 Potential error 38
4.3.1.5 Artificial noise 39
4.3.1.6 Off-line 3D structure effect on the 2D resistivity measurement 41
4.3.2 Inversion data misfit 44
4.3.3 Model accuracy 46
4.3.4 Estimating noise in the inversion 48
4.4 Summary 51
CHAPTER FIVE 54
UNCERTAINTY OF RESISTIVITY IMAGING IN SURVEYING SUBSURFACE STRUCTURES 54
5.1 Background 54
5.2 Approaches 56
5.3 Resistivity imaging results for subsurface target study 58
5.3.1 Array detection ability 58
5.3.2 Resistivity model results for subsurface cavity 60
5.3.2.1 Depth of cavity 60
5.3.2.2 Size of cavity 67
5.3.2.3 Orientation of cavity 68
5.3.2.4 Geometry of cavity 70
5.3.2.5 Conductive cavity modelling 71
5.3.3 Experimental cavity study 72
5.3.4 Resistivity imaging for dike detection 74
5.3.5 Resistivity imaging for weak zone assessment 76
5.3.6 Spatial resolution 78
5.3.7 Sensitivity to resistivity contrast 82
5.3.8 Summary 86
CHAPTER SIX 88
FREEWARE RESOURCES IN PYTHON FOR ELECTRICAL RESISTIVITY MODELLING 88
6.1 Background 88
6.2 Freeware framework 89
6.2.1 pyGIMLi 90
6.2.2 BERT 91
6.2.3 ResIPy 93
6.2.4 SimPEG 95
6.3 Model experiment 98
6.4 Results and discussion 100
6.4.1 Formulation of apparent resistivity data 101
6.4.2 Evaluation of inverted results 103
6.4.2.1 Layered model 103
6.4.2.2 Target model 104
6.4.3 Freeware summary 109
CHAPTER SEVEN 113
JOINT INVERSION OF ELECTRICAL RESISTIVITY IMAGING AND SEISMIC REFRACTION TOMOGRAPHY 113
7.1 Introduction 113
7.2 Joint inversion 114
7.2.1 Methodology 115
7.2.1.1 Basic principles 115
7.2.1.2 Petrophysical relations 116
7.2.1.3 Model experiment 117
7.2.2 Results and discussion of joint inversion 118
7.2.2.1 Joint inversion for layered model 118
7.2.2.2 Estimating vadose zone 121
7.2.2.3 Regularization constraints 122
7.3 Structurally-constrained inversion 124
7.4 Summary 124
CHAPTER EIGHT 126
STUDY CONCLUSIONS 126
8.1 Concluding remarks 126
8.2 Future research direction 130
8.2.1 Tracing river water recharges using joint inversion 130
8.2.2 Machine learning 130
CHAPTER NINE 132
9.1 Implementation guidelines 132
9.1.1 Designing the survey 132
9.1.2 Data acquisition and verification 133
9.1.3 Data filtering 134
9.1.4 Executing inversion 135
9.1.5 Model interpretation 136
9.2 Application strategy 137
10 BIBLIOGRAPHY 139

參考文獻 Adepelumi, A. and Fayemi, O., (2012). Joint application of ground-penetrating radar and electrical resistivity measurements for characterization of subsurface stratigraphy in Southwestern Nigeria. Geophys. Eng., 9(4), 397-412.
AGI, (2003). The SuperSting with Swift automatic resistivity and IP system instruction manual. Advanced Geosciences, Inc. Austin, Texas.
Aizebeokhai, A., Olayinka, A., (2010). Anomaly indexs of arrays for 3d geoelectrical resistivity imaging using orthogonal or parallel 2d profiles. Afr. J. Environ. Sci. Technol., 4(7), 446-454.
Amini, A. and Ramazi, H., (2017). CRSP, numerical results for an electrical resistivity array to detect underground cavities. Open Geosci., 9(1), 13-23.
Andrej, M., Uros, S. and Studies, K., (2012). Electrical Resistivity Imaging of Cave Divaska Jama, Solvania. J. Caves Karst. Stud., 74(3).
Archie, G., (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. J Trans. AIME, 146(01), 54-62.
Astic, T., Heagy, L. J. and Oldenburg, D. W., (2021). Petrophysically and geologically guided multi-physics inversion using a dynamic Gaussian mixture model. Geophys. J. Int., 224(1), 40-68.
Audebert, M., Clément, R., Grossin-Debattista, J., Günther, T., Touze-Foltz, N. and Moreau, S., (2014). Influence of the geomembrane on time-lapse ERT measurements for leachate injection monitoring. J. Waste Manag., 34(4), 780-790.
Auken, E., Pellerin, L., Christensen, N. B. and Sørensen, K., (2006). A survey of current trends in near-surface electrical and electromagnetic methods. Geophys., 71(5), G249-G260.
Ayachit, U., (2015). The paraview guide: a parallel visualization application. Kitware, Inc.
Barker, R., (1989). Depth of investigation of collinear symmetrical four-electrode arrays. Geophys., 54(8), 1031-1037.
Batayneh, A. T., (2011). Archaeogeophysics–archaeological prospection–A mini review. J. King Saud Univ. Sci., 23(1), 83-89.
Befus, K. M., (2018). pyres: a Python wrapper for electrical resistivity modeling with R2. J. Geophys. Eng., 15(2), 338-346.
Benjamin, M., Peruzzo, L., Boaga, J., Cenni, N., Schmutz, M., Wu, Y., Hubbard, S. S. and Cassiani, G., (2020). Time-lapse monitoring of root water uptake using electrical resistivity tomography and mise-à-la-masse: a vineyard infiltration experiment. Soil, 6(1), 95-114.
Bentley, L. R. and Gharibi, M., (2004). Two-and three-dimensional electrical resistivity imaging at a heterogeneous remediation site. Geophys., 69(3), 674-680.
Bernard, J., Leite, O. and Vermeersch, F., (2006). Multi-electrode resistivity imaging for environmental and mining applications. J. IRIS Instruments, Orleans.
Bing Zhou, G., SA (1999). Explicit expressions and numerical calculations for the Fréchet and second derivatives in 2.5 D Helmholtz equation inversion. J. Geophys. Prospect., 47(4), 443-468.
Binley, A. and Kemna, A., (2005). DC resistivity and induced polarization methods, Hydrogeophysics. Springer, pp. 129-156.
Binley, A., Ramirez, A. and Daily, W., (1995). Regularised image reconstruction of noisy electrical resistance tomography data, Proceedings of the 4th Workshop of the European Concerted Action on Process Tomography, Bergen, Norway, pp. 6-8.
Blanchy, G., Saneiyan, S., Boyd, J., McLachlan, P. and Binley, A., (2020). ResIPy, an intuitive open-source software for complex geoelectrical inversion/modeling. Comput. and Geosc., 137, 104423.
Bressert, E., (2012). SciPy and NumPy: an overview for developers.
Brown, W. A., Stafford, K. W., Shaw-Faulkner, M. G. and Grubbs, A., (2011). A comparative integrated geophysical study of Horseshoe Chimney Cave, Colorado Bend State Park, Texas.
Burger, H. R., Sheehan, A. F., Jones, C. H. and Burger, H. R., (2006). Introduction to applied geophysics: Exploring the shallow subsurface, 550. WW Norton New York.
Caputo, R., Piscitelli, S., Oliveto, A., Rizzo, E. and Lapenna, V., (2003). The use of electrical resistivity tomographies in active tectonics: examples from the Tyrnavos Basin, Greece. J. Geodyn., 36(1-2), 19-35.
Cardarelli, E., Cercato, M., Cerreto, A. and Di Filippo, G., (2010). Electrical resistivity and seismic refraction tomography to detect buried cavities. Geophys. Prospect., 58(4), 685-695.
Carey, A. M., Paige, G. B., Carr, B. J. and Dogan, M. J., (2017). Forward modeling to investigate inversion artifacts resulting from time-lapse electrical resistivity tomography during rainfall simulations. J. Appl. Geophy., 145, 39-49.
Carey, A. M., Paige, G. B., Carr, B. J., Holbrook, W. S. and Miller, S. N., (2019). Characterizing hydrological processes in a semiarid rangeland watershed: A hydrogeophysical approach. Hydrol. Process., 33(5), 759-774.
Carriere, S. D., Chalikakis, K., Danquigny, C., Clement, R. and Emblanch, C., (2015). Feasibility and limits of electrical resistivity tomography to monitor water infiltration through karst medium during a rainy event, Hydrogeological and environmental investigations in Karst systems. Springer, pp. 45-55.
Caterina, D., Beaujean, J., Robert, T. and Nguyen, F., (2013). A comparison study of different image appraisal tools for electrical resistivity tomography. Near Surf. Geophys., 11(6), 639-658.
Chambers, J., Ogilvy, R., Kuras, O., Cripps, J. and Meldrum, P., (2002). 3D electrical imaging of known targets at a controlled environmental test site. Environ. Geol., 41(6), 690-704.
Chambers, J., Wilkinson, P., Wardrop, D., Hameed, A., Hill, I., Jeffrey, C., Loke, M., Meldrum, P. and Kuras, O., (2012). Bedrock detection beneath river terrace deposits using three-dimensional electrical resistivity tomography. Geomorphology, 177, 17-25.
Chang, P.-Y., Chang, L.-C., Hsu, S.-Y., Tsai, J.-P. and Chen, W.-F., (2017). Estimating the hydrogeological parameters of an unconfined aquifer with the time-lapse resistivity-imaging method during pumping tests: Case studies at the Pengtsuo and Dajou sites, Taiwan. J. Appl. Geophy., 144, 134-143.
Chang, P.-Y., Chen, C.-c., Chang, S.-K., Wang, T.-B., Wang, C.-Y. and Hsu, S.-K., (2012). An investigation into the debris flow induced by Typhoon Morakot in the Siaolin Area, Southern Taiwan, using the electrical resistivity imaging method. Geophys. J. Int., 188(3), 1012-1024.
Chang, P.-Y., Liang-Chi, C., Teh-Quei, L., Yu-Chang, C. and Huei-Fen, C., (2015). Examining lake-bottom structures with the resistivity imaging method in Ilan′s Da-Hu Lake in Northeastern Taiwan. J. Appl. Geophy., 119, 170-177.
Chang, P.-Y., Shu-Kai, C., Hsing-Chang, L. and Wang, S. C., (2011). Using integrated 2D and 3D resistivity imaging methods for illustrating the mud-fluid conduits of the Wushanting Mud Volcanoes in Southwestern Taiwan. Terr. Atmospheric Ocean. Sci., 22(1), 1.
Chen, B., Garré, S., Liu, H., Yan, C., Liu, E., Gong, D. and Mei, X., (2019). Two-dimensional monitoring of soil water content in fields with plastic mulching using electrical resistivity tomography. Comput. Electron. Agric., 159, 84-91.
Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A. and Oldenburg, D. W., (2015). SimPEG: An open-source framework for simulation and gradient-based parameter estimation in geophysical applications. Comput. Geosci., 85, 142-154.
Coggon, J., (1971). Electromagnetic and electrical modeling by the finite element method. Geophysics, 36(1), 132-155.
Comte, J. C., Wilson, C., Ofterdinger, U. and González‐Quirós, A., (2017). Effect of volcanic dykes on coastal groundwater flow and saltwater intrusion: A field‐scale multiphysics approach and parameter evaluation. J. Water Resour. Res., 53(3), 2171-2198.
Dahlin, T., (2000). Short note on electrode charge‐up effects in DC resistivity data acquisition using multi‐electrode arrays. Geophys. Prospect., 48(1), 181-187.
Dahlin, T. and Loke, M. H., (1998). Resolution of 2D Wenner resistivity imaging as assessed by numerical modelling. J. Appl. Geophy., 38(4), 237-249.
Dahlin, T. and Zhou, B., (2004). A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys. Prospect., 52(5), 379-398.
Daily, W. and Ramirez, A., (1995). Electrical resistance tomography during in-situ trichloroethylene remediation at the Savannah River Site. J. Appl. Geophy., 33(4), 239-249.
Das, P. and Mohanty, P. R., (2016). Resistivity imaging technique to delineate shallow subsurface cavities associated with old coal working: a numerical study. Environ. Earth Sci., 75(8), 661.
Day-Lewis, F. D., Johnson, C. D. and Singha, K., Lane, JWJ, 2008. Best practices in electrical resistivity imaging: Data collection, processing, and application to data from Corinna, Maine. An Administrative Report for the United States Environmental Protection Agency Region
Deceuster, J., Kaufmann, O. and Van Camp, M., (2013). Automated identification of changes in electrode contact properties for long-term permanent ERT monitoring experiments. Geophys., 78(2), E79-E94.
Delforge, D., Watlet, A., Kaufmann, O., Van Camp, M. and Vanclooster, M., (2021). Time-series clustering approaches for subsurface zonation and hydrofacies detection using a real time-lapse electrical resistivity dataset. J. App. Geophy., 184, 104203.
Doyoro, Y. G., Chang, P.-Y. and Puntu, J. M., (2021). Uncertainty of the 2D resistivity survey on the subsurface cavities. Appl. Sci., 11(7), 3143.
Doyoro, Y. G., Chang, P.-Y., Puntu, J. M., Lin, D.-J., Van Huu, T., Rahmalia, D. A. and Shie, M.-S., (2022). A review of open software resources in python for electrical resistivity modelling. Geosci. Lett., 9(1), 1-16.
Drahor, M. G., Göktürkler, G., Berge, M. A. and Kurtulmuş, T. Ö., (2006). Application of electrical resistivity tomography technique for investigation of landslides: a case from Turkey. J. Environ. Geol., 50(2), 147-155.
Druskin, V., (1998). On the uniqueness of inverse problems from incomplete boundary data. SIAM J. Appl. Math. 58(5), 1591-1603.
Du, Q., Wang, D. and Zhu, L., (2009). On mesh geometry and stiffness matrix conditioning for general finite element spaces. SIAM J. Numer. Anal., 47(2), 1421-1444.
Eissa, R., Cassidy, N., Pringle, J. and Stimpson, I., (2020). Electrical resistivity tomography array comparisons to detect cleared-wall foundations in brownfield sites. Q. J. Eng. Geol., 53(1), 137-144.
Elawadi, E. A., (2003). Cavity detection by integrated geophysical methods.
Estivill-Castro, V., (2002). Why so many clustering algorithms: a position paper. SIGKDD Expl., 4(1), 65-75.
Fazzito, S. Y., Rapalini, A. E., Cortés, J. M. and Terrizzano, C. M., (2009). Characterization of Quaternary faults by electric resistivity tomography in the Andean Precordillera of Western Argentina. 28(3), 217-228.
Festa, V., Fiore, A., Parise, M., Siniscalchi, A. and Studies, K., (2012). Sinkhole evolution in the Apulian karst of southern Italy: a case study, with some considerations on sinkhole hazards. J Caves Karst Stud., 74(2), 137-147.
Flechsig, C., Fabig, T., Rücker, C. and Schütze, C., (2010). Geoelectrical investigations in the Cheb Basin/W-Bohemia: an approach to evaluate the near-surface conductivity structure. Studia Geophys. Geod., 54(3), 443-463.
Friedel, S., (2003). Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach. Geophys. J. Int., 153(2), 305-316.
Gabarrón, M., Martínez-Pagán, P., Martínez-Segura, M. A., Bueso, M. C., Martínez-Martínez, S., Faz, Á. and Acosta, J. A. J. M., (2020). Electrical resistivity tomography as a support tool for physicochemical properties assessment of near-surface waste materials in a mining tailing pond (El Gorguel, SE Spain). Minerals, 10(6), 559.
Gallardo, L. A. and Meju, M. A., (2004). Joint two‐dimensional DC resistivity and seismic travel time inversion with cross‐gradients constraints. Geophys. Res. Solid Earth, 109(B3).
Geuzaine, C. and Remacle, J. F., (2009). Gmsh: A 3‐D finite element mesh generator with built‐in pre‐and post‐processing facilities. Int. J. Numer. Meth. Eng., 79(11), 1309-1331.
Giroux, B. and Larouche, B., (2013). Task-parallel implementation of 3D shortest path raytracing for geophysical applications. Comput. and Geosci., 54, 130-141.
Gómez‐Ortiz, D., Martín‐Velázquez, S., Martín‐Crespo, T., De Ignacio‐San José, C. and Lillo, (2010). Application of electrical resistivity tomography to the environmental characterization of abandoned massive sulphide mine ponds (Iberian Pyrite Belt, SW Spain). Near Surf. Geophys., 8(1), 65-74.
Gough, D. and Sekii, T., (2002). On the effect of error correlation on linear inversions. Mon. Notices Royal Astron. Soc., 335(1), 170-176.
Gourdol, L., Clément, R., Juilleret, J., Pfister, L. and Hissler, C., (2018). Large-scale ERT surveys for investigating shallow regolith properties and architecture. Hydrol. Earth. Syst. Sci, 1-39.
Guglielmetti, L., Comina, C., Abdelfettah, Y., Schill, E. and Mandrone, G., (2013). Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region. Tectonophysics, 608, 1025-1036.
Günther, T., (2005). Inversion methods and resolution analysis for the 2D/3D reconstruction of resistivity structures from DC measurements, Freiberg University of Mining and Technology.
Günther, T. and Martin, T., (2016). Spectral two-dimensional inversion of frequency-domain induced polarization data from a mining slag heap. J. Appl. Geophys., 135, 436-448.
Günther, T. and Rücker, C., (2015). Boundless Electrical Resistivity Tomography BERT 2–the user tutorial.
Günther, T., Rücker, C. and Spitzer, K., (2006). Three-dimensional modelling and inversion of DC resistivity data incorporating topography—II. Inversion. Geophys. J. Int., 166(2), 506-517.
Hansen, P. C., (1992). Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev., 34(4), 561-580.
Hassan, A. A., Kadhim, E. H. and Ahmed, M. T., (2018). Performance of Various Electrical Resistivity Configurations for Detecting Buried Tunnels Using 2D Electrical Resistivity Tomography Modelling. Diyala J. Eng. Sc., 11(3), 14-21.
Hauck, C., Böttcher, M. and Maurer, H., (2011). A new model for estimating subsurface ice content based on combined electrical and seismic data sets. J. Cryosph., 5(2), 453-468.
Hauck, C. and Mühll, D. V., (2003). Inversion and interpretation of two‐dimensional geoelectrical measurements for detecting permafrost in mountainous regions. Permafr. Periglac. Process., 14(4), 305-318.
Hayley, K., Bentley, L. R., Gharibi, M. and Nightingale, M., (2007). Low temperature dependence of electrical resistivity: Implications for near surface geophysical monitoring. J. Geophys. Res., 34(18).
Heagy, L. J., Cockett, R., Kang, S., Rosenkjaer, G. K. and Oldenburg, D. W., (2017). A framework for simulation and inversion in electromagnetics. Comput. and Geosci., 107, 1-19.
Hellman, K., Johansson, S., Olsson, P. and Dahlin, T., (2016). Resistivity inversion software comparison, Near Surface Geoscience 2016-22nd European Meeting of Environmental and Engineering Geophysics. European Association of Geoscientists & Engineers.
Hellman, K., Ronczka, M., Günther, T., Wennermark, M., Rücker, C. and Dahlin, T., (2017). Structurally coupled inversion of ERT and refraction seismic data combined with cluster-based model integration. J. App. Geophy., 143, 169-181.
Hermawan, O. R. and Putra, D. P. E., (2016). the effectiveness of wenner-schlumberger and dipole-dipole array of 2d geoelectrical survey to detect the occurring of groundwater in the gunung kidul karst aquifer system, Yogyakarta, Indonesia. J. Appl. Geol., 1(2), 71-81.
Hilbich, C., Marescot, L., Hauck, C., Loke, M. and Mäusbacher, R., (2009). Applicability of electrical resistivity tomography monitoring to coarse blocky and ice‐rich permafrost landforms. Permafr. Periglac. Process., 20(3), 269-284.
Hill, R., Carpenter, D. and Tasar, T., (1989). Railway track admittance, earth-leakage effects and track circuit operation, Proceedings, Technical Papers Presented at the IEEE/ASME Joint Railroad Conference. IEEE, pp. 55-62.
Ho, G.-R., Ping-Yu, C., Lo, W., Chia-Mei, L. and Sheng-Rong, S., (2014). New evidence of regional geological structures inferred from reprocessing and resistivity data interpretation in the Chingshui-Sanshing-Hanchi area of Southwestern Ilan County, NE Taiwan. Terr. Atoms. Ocean Sci., 25(4), 491.
Hsu, H.-L., Yanites, B. J., Chen, C.-c. and Chen, Y.-G., (2010). Bedrock detection using 2D electrical resistivity imaging along the Peikang River, central Taiwan. Geomorphology, 114(3), 406-414.
Hunter, J. D., (2007). Matplotlib: A 2D graphics environment. Comput. Sci. Eng., 9(03), 90-95.
Hyman, J. M. and Shashkov, M., (1999). Mimetic discretizations for Maxwell′s equations. J. Comput. Phys., 151(2), 881-909.
Johnson, T. C., Slater, L. D., Ntarlagiannis, D., Day‐Lewis, F. D. and Elwaseif, M., (2012). Monitoring groundwater‐surface water interaction using time‐series and time‐frequency analysis of transient three‐dimensional electrical resistivity changes. Water Resour. Res., 48(7).
Jordi, C., Doetsch, J., Günther, T., Schmelzbach, C., Maurer, H. and Robertsson, J., (2020). Structural joint inversion on irregular meshes. Geophys. J. Int., 220(3), 1995-2008.
Kalscheuer, T., De los Ángeles García Juanatey, M., Meqbel, N. and Pedersen, L. B., (2010). Non-linear model error and resolution properties from two-dimensional single and joint inversions of direct current resistivity and radiomagnetotelluric data. Geophys. J. Int. , 182(3), 1174-1188.
Kang, S., Fournier, D., Werthmuller, D., Heagy, L. J. and Oldenburg, D., (2018). SimPEG-EM1D: gradient-based 1D inversion software for large-scale airborne electromagnetic data, AGU Fall Meeting Abstracts, pp. NS53A-0557.
Kang*, S., Cockett, R., Heagy, L. J. and Oldenburg, D. W., (2015). Moving between dimensions in electromagnetic inversions, SEG Technical Program Expanded Abstracts 2015. Society of Explor. Geophys., pp. 5000-5004.
Kearey, P., Brooks, M. and Hill, I., (2002). An introduction to geophysical exploration, 4. John Wiley & Sons.
Keller, G. V., (2017). Electrical properties of rocks and minerals. CRC Press.
Keller, G. V. and Carmichael, R., (1982). Electrical properties of rocks and minerals. CRC Handbook Physics Proporties Rocks, 1, 217-293.
Keller, G. V. and Frischknecht, F. C., (1966). Electrical methods in geophysical prospecting.
Kidanu, S., Varnavina, A., Anderson, N. and Torgashov, E., (2020). Pseudo-3D electrical resistivity tomography imaging of subsurface structure of a sinkhole—A case study in Greene County, Missouri. J AIMS Geoscienc., 6(1), 54-70.
Kim, H. J. a. and Kim, Y. H., (2011). A unified transformation function for lower and upper bounding constraints on model parameters in electrical and electromagnetic inversion. Geophys., 8(1), 21-26.
Kim, J.-H., Yi, M.-J., Hwang, S.-H., Song, Y., Cho, S.-J. and Synn, J.-H., (2007). Integrated geophysical surveys for the safety evaluation of a ground subsidence zone in a small city. J. Geophys. Eng., 4(3), 332-347.
Klingler, S., Leven, C., Cirpka, O. A. and Dietrich, P., (2020). Anomaly index-driven optimization of direct-current geoelectric mapping surveys in large areas. J. Appl. Geophys., 176, 104002.
Kumar, D., Rao, V. A. and Sarma, V., (2014). Hydrogeological and geophysical study for deeper groundwater resource in quartzitic hard rock ridge region from 2D resistivity data. J. Earth Syst. Sci., 123(3), 531-543.
LaBrecque, D. J., Miletto, M., Daily, W., Ramirez, A. and Owen, E., (1996). The effects of noise on Occam’s inversion of resistivity tomography data. Geophys., 61(2), 538-548.
Lin, J. (2012). Why Python is the next wave in earth sciences computing. Bull. Am. Meteorol. Soc., 93(12), 1823-1824.
Loke, M., Acworth, I. and Dahlin, T., 2001. A comparison of smooth and blocky inversion methods in 2-D electrical imaging surveys. ASEG Extended Abstracts, 2001, 1-4.
Loke, M., (2004). Tutorial: 2-D and 3-D electrical imaging surveys. Geotomo Software, Malaysia.
Loke, M., (2013). Tutorial: 2-D and 3-D electrical imaging surveys. Geotomo Software Malaysia. Unpublished.
Loke, M. and Barker, R., (1996). Practical techniques for 3D resistivity surveys and data inversion1. Geophys. Prospect., 44(3), 499-523.
Loke, M., Chambers, J., Rucker, D., Kuras, O. and Wilkinson, P., (2013). Recent developments in the direct-current geoelectrical imaging method. Appl. Geophys., 95, 135-156.
Loke, M., Wilkinson, P. and Chambers, J., (2010). Fast computation of optimized electrode arrays for 2D resistivity surveys. Comput. Geosci., 36(11), 1414-1426.
Loke, M., Wilkinson, P., Chambers, J., Uhlemann, S. and Sorensen, J., (2015). Optimized arrays for 2-D resistivity survey lines with a large number of electrodes. J. App. Geophy., 112, 136-146.
Looms, M. C., Jensen, K. H., Binley, A. and Nielsen, L., (2008). Monitoring unsaturated flow and transport using cross‐borehole geophysical methods. J. Vadose Zone 7(1), 227-237.
Lowrie, W. and Fichtner, A., (2020). Fundamentals of geophysics. Cambridge University Press, Cambridge, UK.
MacQueen, J., (1967). Some methods for classification and analysis of multivariate observations, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Oakland, CA, USA, pp. 281-297.
Marr, D. and Hildreth, E., (1980). Theory of edge detection. Proc. Royal Soc. B., 207(1167), 187-217.
Martinez-Lopez, J., Rey, J., Duenas, J., Hidalgo, C. and Benavente, J., (2013). Electrical Tomography Applied to the Detection of Subsurface Cavites. J. Caves Karst. Stud., 75, 28-37.
Martorana, R., Fiandaca, G., Casas Ponsati, A., Cosentino, P. and Engineering, (2009). Comparative tests on different multi-electrode arrays using models in near-surface geophysics. J. App. Geophy., 6(1), 1-20.
Mary, B., Peruzzo, L., Boaga, J., Cenni, N., Schmutz, M., Wu, Y., Hubbard, S. S. and Cassiani, G., (2020). Time-lapse monitoring of root water uptake using electrical resistivity tomography and mise-à-la-masse: a vineyard infiltration experiment. J. Soil, 6(1), 95-114.
McGill, R., Tukey, J. W. and Larsen, W. A., (1978). Variations of box plots. Am. Stat. Assoc., 32(1), 12-16.
McGillivray, P. R., (1992). Forward modeling and inversion of DC resistivity and MMR data, University of British Columbia.
McGillivray, P. R. and Oldenburg, D., (1990). Method for Calculating Frechet Dererativies and Sensetivities for the Non-linear Inverse Problem: A Comparative Study. J. Geophys. Prospect., 38(5), 499-524.
Merriam, J., (2005). Injection electrode overprinting. Geophys. Eng., 10(4), 365-370.
Militzer, H., Rösler, R. and Lösch, W., (1979). Theoretical and experimental investigations for cavity research with geoelectrical resistivity methods. Geophys. Prospect., 27(3), 640-652.
Miller, C. R., Routh, P. S., Brosten, T. R. and McNamara, J., (2008). Application of time-lapse ERT imaging to watershed characterization. Geophys., 73(3), G7-G17.
Mitchell, M. A., (2020). Methodologies for the use of electrical and electromagnetic methods in complex, subterranean environments, University of British Columbia.
Mochales, T., Casas, A., Pueyo, E., Pueyo, O., Román, M., Pocoví, A., Soriano, M. and Ansón, D., (2008). Detection of underground cavities by combining gravity, magnetic and ground penetrating radar surveys: a case study from the Zaragoza area, NE Spain. Environ. Geol., 53(5), 1067-1077.
Mollaret, C., Wagner, F. M., Hilbich, C., Scapozza, C. and Hauck, C., (2020). Petrophysical joint inversion applied to alpine permafrost field sites to image subsurface ice, water, air, and rock contents. 8, 85.
Mufti, I. R., (1976). Finite-difference resistivity modeling for arbitrarily shaped two-dimensional structures. Geophys., 41(1), 62-78.
Muhammad, F., Samgyu, P., Young, S. S., Ho Kim, J., Mohammad, T. and Adepelumi, A. A., (2012). Subsurface cavity detection in a karst environment using electrical resistivity (er): a case study from yongweol-ri, South Korea. Earth Sci. Res. , 16(1), 75-82.
Narayan, S., Dusseault, M. B. and Nobes, D. C., (1994). Inversion techniques applied to resistivity inverse problems. Inverse Probl., 10(3), 669.
Neumaier, A., (1998). Solving ill-conditioned and singular linear systems: A tutorial on regularization. J. Soc. Ind. Appl. Math. , 40(3), 636-666.
Neyamadpour, A., Wan Abdullah, W., Taib, S., Neyamadpour, B. and Engineering, (2010). Comparison of Wenner and dipole–dipole arrays in the study of an underground three-dimensional cavity. J. App. Geophy., 7(1), 30-40.
Nguyen, F., Garambois, S., Jongmans, D., Pirard, E. and Loke, M., (2005). Image processing of 2D resistivity data for imaging faults. J. Appl. Geophys., 57(4), 260-277.
Nickschick, T., Flechsig, C., Mrlina, J., Oppermann, F., Löbig, F. and Günther, T., (2019). Large-scale electrical resistivity tomography in the Cheb Basin (Eger Rift) at an International Continental Drilling Program (ICDP) monitoring site to image fluid-related structures. Solid Earth 10(6), 1951-1969.
Nimmer, R. E., Osiensky, J. L., Binley, A. M. and Williams, B. C., (2008). Three-dimensional effects causing artifacts in two-dimensional, cross-borehole, electrical imaging. Hydrol., 359(1-2), 59-70.
Okpoli, C. C., (2013). Sensitivity and resolution capacity of electrode configurations. Geophys. J. Int., 2013, 608037.
Oldenborger, G. A., Routh, P. S. and Knoll, M. D., (2005). Sensitivity of electrical resistivity tomography data to electrode position errors. Geophys. J. Int., 163(1), 1-9.
Oldenburg, D. W., Heagy, L. J., Kang, S. and Cockett, R., (2020). 3D electromagnetic modelling and inversion: a case for open source. J. Expl. Geophys., 51(1), 25-37.
Oldenburg, D. W. and Li, Y., (1999). Estimating depth of investigation in dc resistivity and IP surveys. Geophys., 64(2), 403-416.
Oldenburg, D. W. and Li, Y., (2005). Inversion for applied geophysics: A tutorial. J Near-surface Geophys., 89-150.
Orlando, L., (2013). GPR to constrain ERT data inversion in cavity searching: Theoretical and practical applications in archeology. J. Appl. Geophy., 89, 35-47.
Park, M. K., Park, S., Yi, M.-J., Kim, C., Son, J.-S., Kim, J.-H. and Abraham, A. A., (2014). Application of electrical resistivity tomography (ERT) technique to detect underground cavities in a karst area of South Korea. Environ. Earth Sci., 71(6), 2797-2806.
Parker, R. L., (1977). Understanding inverse theory. Annu. Rev. Earth Planet. Sci., 5, 35.
Parsekian, A. D., Claes, N., Singha, K., Minsley, B. J., Carr, B., Voytek, E., Harmon, R., Kass, A., Carey, A. and Thayer, D., (2017). Comparing measurement response and inverted results of electrical resistivity tomography instruments. Environ. Eng. Geophys., 22(3), 249-266.
Peng, R. D., (2011). Reproducible research in computational science. Science, 334(6060), 1226-1227.
Portniaguine, O. and Zhdanov, M. S., (1999). Focusing geophysical inversion images. Geophys., 64(3), 874-887.
Rochlitz, R., Skibbe, N. and Günther, T., (2019). custEM: Customizable finite-element simulation of complex controlled-source electromagnetic data. Geophys., 84(2), F17-F33.
Rubin, Y. and Hubbard, S. S., (2006). Hydrogeophysics, 50. Springer Science & Business Media.
Rücker, C., (2010). Advanced electrical resistivity modelling and inversion using unstructured discretization, Universität Leipzig.
Rücker, C., Günther, T. and Spitzer, K., (2006). Three-dimensional modelling and inversion of dc resistivity data incorporating topography—I. Modelling. Geophysical Journal International, 166(2), 495-505.
Rücker, C., Günther, T. and Wagner, F. M., (2017). pyGIMLi: An open-source library for modelling and inversion in geophysics. Comput. and Geosci., 109, 106-123.
Rücker, C., Günther, T., Wagner, F. M. J. C. and Geosciences, (2017b). pyGIMLi: An open-source library for modelling and inversion in geophysics. 109, 106-123.
Rucker, D. F., Loke, M. H., Levitt, M. T. and Noonan, G. E., (2010). Electrical-resistivity characterization of an industrial site using long electrodes. Geophys., 75(4), WA95-WA104.
Sack, J.-R. and Urrutia, J., (1999). Handbook of computational geometry. Elsevier.
Santos, F. A. M. and Afonso, A. R. A., (2005). Detection and 2D modelling of cavities using pole–dipole array. J. Environ. Geol., 48(1), 108-116.
Saribudak, M., Hawkins, A. and Stoker, K., (2012). Do air-filled caves cause high resistivity anomalies? A six-case study from the Edwards Aquifer Recharge Zone in San Antonio, Texas. Houst. Geol. Soc.Bull, 54, 41-49.
Satitpittakul, A., Vachiratienchai, C. and Siripunvaraporn, W., (2013). Factors influencing cavity detection in Karst terrain on two-dimensional (2-D) direct current (DC) resistivity survey: A case study from the western part of Thailand. Eng. Geol., 152(1), 162-171.
Adepelumi, A. and Fayemi, O., 2012a. Joint application of ground-penetrating radar and electrical resistivity measurements for characterization of subsurface stratigraphy in Southwestern Nigeria. Geophys. Eng., 9(4), 397-412.
Adepelumi, A. and Fayemi, O., 2012b. Joint application of ground penetrating radar and electrical resistivity measurements for characterization of subsurface stratigraphy in Southwestern Nigeria. J. Geophys. Eng., 9(4), 397-412.
Adepelumi, A., Fayemi, O. J. J. o. G. and Engineering, 2012. Joint application of ground penetrating radar and electrical resistivity measurements for characterization of subsurface stratigraphy in Southwestern Nigeria. 9(4), 397-412.
AGI, 2003. The SuperSting with Swift automatic resistivity and IP system instruction manual. Advanced Geosciences, Inc. Austin, Texas.
Aizebeokhai, A., Olayinka, A. and Technology, 2010a. Anomaly indexs of arrays for 3d geoelectrical resistivity imaging using orthogonal or parallel 2d profiles. AJEST, 4(7), 446-454.
Aizebeokhai, A., Olayinka, A. and Technology, 2010b. Anomaly indexs of arrays for 3d geoelectrical resistivity imaging using orthogonal or parallel 2d profiles. Afr. J. Environ. Sci. Technol., 4(7), 446-454.
Aizebeokhai, A. P., 2010. 2D and 3D geoelectrical resistivity imaging: theory and field design. Sci. Res. Essay, 5(23), 3592-3605.
Amini, A. and Ramazi, H., 2017. CRSP, numerical results for an electrical resistivity array to detect underground cavities. Open Geosci., 9(1), 13-23.
Andrej, M., Uros, S. and Studies, K., 2012. Electrical Resistivity Imaging of Cave Divaska Jama, Solvania. J. Caves Karst. Stud., 74(3).
Archie, G., 1942a. The electrical resistivity log as an aid in determining some reservoir characteristics. 146(01), 54-62.
Archie, G. E., 1942b. The electrical resistivity log as an aid in determining some reservoir characteristics. Transac. AIME, 146(01), 54-62.
Archie, G. E. J. T. o. t. A., 1942c. The electrical resistivity log as an aid in determining some reservoir characteristics. 146(01), 54-62.
Astic, T., Heagy, L. J. and Oldenburg, D. W., 2021. Petrophysically and geologically guided multi-physics inversion using a dynamic Gaussian mixture model. Geophys. J. Int., 224(1), 40-68.
Audebert, M., Clément, R., Grossin-Debattista, J., Günther, T., Touze-Foltz, N. and Moreau, S., 2014. Influence of the geomembrane on time-lapse ERT measurements for leachate injection monitoring. J. Waste Manag., 34(4), 780-790.
Auken, E., Pellerin, L., Christensen, N. B. and Sørensen, K., 2006. A survey of current trends in near-surface electrical and electromagnetic methods. Geophys., 71(5), G249-G260.
Ayachit, U., 2015. The paraview guide: a parallel visualization application. Kitware, Inc.
Barker, R., 1989. Depth of investigation of collinear symmetrical four-electrode arrays. Geophys., 54(8), 1031-1037.
Batayneh, A. T., 2011. Archaeogeophysics–archaeological prospection–A mini review. J. King Saud Univ. Sci., 23(1), 83-89.
Befus, K. M., 2018. pyres: a Python wrapper for electrical resistivity modeling with R2. J. Geophys. Eng., 15(2), 338-346.
Benjamin, M., Peruzzo, L., Boaga, J., Cenni, N., Schmutz, M., Wu, Y., Hubbard, S. S. and Cassiani, G., 2020. Time-lapse monitoring of root water uptake using electrical resistivity tomography and mise-à-la-masse: a vineyard infiltration experiment. Soil, 6(1), 95-114.
Bentley, L. R. and Gharibi, M., 2004. Two-and three-dimensional electrical resistivity imaging at a heterogeneous remediation site. Geophys., 69(3), 674-680.
Bernard, J., Leite, O. and Vermeersch, F., 2006. Multi-electrode resistivity imaging for environmental and mining applications. J. IRIS Instruments, Orleans.
Bing Zhou, G., SA 1999. Explicit expressions and numerical calculations for the Fréchet and second derivatives in 2.5 D Helmholtz equation inversion. J. Geophys. Prospect., 47(4), 443-468.
Binley, A. and Kemna, A., 2005. DC resistivity and induced polarization methods, Hydrogeophysics. Springer, pp. 129-156.
Binley, A., Ramirez, A. and Daily, W., 1995. Regularised image reconstruction of noisy electrical resistance tomography data, Proceedings of the 4th Workshop of the European Concerted Action on Process Tomography, Bergen, Norway, pp. 6-8.
Blainey, J. B., Ferré, T. P. and Cordova, J. T. J. W. r. r., 2007. Assessing the likely value of gravity and drawdown measurements to constrain estimates of hydraulic conductivity and specific yield during unconfined aquifer testing. 43(12).
Blanchy, G., Saneiyan, S., Boyd, J., McLachlan, P. and Binley, A., 2020. ResIPy, an intuitive open-source software for complex geoelectrical inversion/modeling. Comput. and Geosc., 137, 104423.
Bressert, E., 2012. SciPy and NumPy: an overview for developers.
Brown, W. A., Stafford, K. W., Shaw-Faulkner, M. G. and Grubbs, A., 2011. A comparative integrated geophysical study of Horseshoe Chimney Cave, Colorado Bend State Park, Texas.
Burger, H. R., Sheehan, A. F., Jones, C. H. and Burger, H. R., 2006. Introduction to applied geophysics: Exploring the shallow subsurface, 550. WW Norton New York.
Caputo, R., Piscitelli, S., Oliveto, A., Rizzo, E. and Lapenna, V., 2003. The use of electrical resistivity tomographies in active tectonics: examples from the Tyrnavos Basin, Greece. J. Geodyn., 36(1-2), 19-35.
Cardarelli, E., Cercato, M., Cerreto, A. and Di Filippo, G., 2010. Electrical resistivity and seismic refraction tomography to detect buried cavities. Geophys. Prospect., 58(4), 685-695.
Carey, A. M., Paige, G. B., Carr, B. J. and Dogan, M. J., 2017. Forward modeling to investigate inversion artifacts resulting from time-lapse electrical resistivity tomography during rainfall simulations. J. Appl. Geophy., 145, 39-49.
Carey, A. M., Paige, G. B., Carr, B. J., Holbrook, W. S. and Miller, S. N., 2019. Characterizing hydrological processes in a semiarid rangeland watershed: A hydrogeophysical approach. Hydrol. Process., 33(5), 759-774.
Carriere, S. D., Chalikakis, K., Danquigny, C., Clement, R. and Emblanch, C., 2015. Feasibility and limits of electrical resistivity tomography to monitor water infiltration through karst medium during a rainy event, Hydrogeological and environmental investigations in Karst systems. Springer, pp. 45-55.
Caterina, D., Beaujean, J., Robert, T. and Nguyen, F., 2013. A comparison study of different image appraisal tools for electrical resistivity tomography. Near Surf. Geophys., 11(6), 639-658.
Chambers, J., Ogilvy, R., Kuras, O., Cripps, J. and Meldrum, P., 2002. 3D electrical imaging of known targets at a controlled environmental test site. Environ. Geol., 41(6), 690-704.
Chambers, J., Wilkinson, P., Wardrop, D., Hameed, A., Hill, I., Jeffrey, C., Loke, M., Meldrum, P. and Kuras, O., 2012. Bedrock detection beneath river terrace deposits using three-dimensional electrical resistivity tomography. Geomorphology, 177, 17-25.
Chang, P.-Y., Chang, L.-C., Hsu, S.-Y., Tsai, J.-P. and Chen, W.-F., 2017. Estimating the hydrogeological parameters of an unconfined aquifer with the time-lapse resistivity-imaging method during pumping tests: Case studies at the Pengtsuo and Dajou sites, Taiwan. J. Appl. Geophy., 144, 134-143.
Chang, P.-Y., Chen, C.-c., Chang, S.-K., Wang, T.-B., Wang, C.-Y. and Hsu, S.-K., 2012. An investigation into the debris flow induced by Typhoon Morakot in the Siaolin Area, Southern Taiwan, using the electrical resistivity imaging method. Geophys. J. Int., 188(3), 1012-1024.
Chang, P.-Y., Liang-Chi, C., Teh-Quei, L., Yu-Chang, C. and Huei-Fen, C., 2015. Examining lake-bottom structures with the resistivity imaging method in Ilan′s Da-Hu Lake in Northeastern Taiwan. J. Appl. Geophy., 119, 170-177.
Chang, P.-Y., Shu-Kai, C., Hsing-Chang, L. and Wang, S. C., 2011. Using integrated 2D and 3D resistivity imaging methods for illustrating the mud-fluid conduits of the Wushanting Mud Volcanoes in Southwestern Taiwan. Terr. Atmospheric Ocean. Sci., 22(1), 1.
Chen, B., Garré, S., Liu, H., Yan, C., Liu, E., Gong, D. and Mei, X., 2019. Two-dimensional monitoring of soil water content in fields with plastic mulching using electrical resistivity tomography. Comput. Electron. Agric., 159, 84-91.
Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A. and Oldenburg, D. W., 2015a. SimPEG: An open-source framework for simulation and gradient-based parameter estimation in geophysical applications. Comput. Geosci., 85, 142-154.
Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A. and Oldenburg, D. W., 2015b. SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Comput and Geosci, 85, 142-154.
Coggon, J., 1971. Electromagnetic and electrical modeling by the finite element method. Geophysics, 36(1), 132-155.
Comte, J. C., Wilson, C., Ofterdinger, U. and González‐Quirós, A., 2017. Effect of volcanic dykes on coastal groundwater flow and saltwater intrusion: A field‐scale multiphysics approach and parameter evaluation. J. Water Resour. Res., 53(3), 2171-2198.
Dahlin, T., 2000. Short note on electrode charge‐up effects in DC resistivity data acquisition using multi‐electrode arrays. Geophys. Prospect., 48(1), 181-187.
Dahlin, T. and Loke, M. H., 1998. Resolution of 2D Wenner resistivity imaging as assessed by numerical modelling. J. Appl. Geophy., 38(4), 237-249.
Dahlin, T. and Zhou, B., 2004. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys. Prospect., 52(5), 379-398.
Daily, W. and Ramirez, A., 1995. Electrical resistance tomography during in-situ trichloroethylene remediation at the Savannah River Site. J. Appl. Geophy., 33(4), 239-249.
Das, P. and Mohanty, P. R., 2016. Resistivity imaging technique to delineate shallow subsurface cavities associated with old coal working: a numerical study. Environ. Earth Sci., 75(8), 661.
Deceuster, J., Kaufmann, O. and Van Camp, M., 2013. Automated identification of changes in electrode contact properties for long-term permanent ERT monitoring experiments. Geophys., 78(2), E79-E94.
Delforge, D., Watlet, A., Kaufmann, O., Van Camp, M. and Vanclooster, M., 2021. Time-series clustering approaches for subsurface zonation and hydrofacies detection using a real time-lapse electrical resistivity dataset. J. App. Geophy., 184, 104203.
Dobry, R., Borcherdt, R., Crouse, C., Idriss, I., Joyner, W., Martin, G. R., Power, M., Rinne, E. and Seed, R., 2000. New site coefficients and site classification system used in recent building seismic code provisions. Earthq. Spectra., 16(1), 41-67.
Doyoro, Y. G., Chang, P.-Y. and Puntu, J. M., 2021. Uncertainty of the 2D resistivity survey on the subsurface cavities. Appl. Sci., 11(7), 3143.
Doyoro, Y. G., Chang, P.-Y., Puntu, J. M., Lin, D.-J., Van Huu, T., Rahmalia, D. A. and Shie, M.-S., 2022. A review of open software resources in python for electrical resistivity modelling. Geosci. Lett., 9(1), 1-16.
Drahor, M. G., Göktürkler, G., Berge, M. A. and Kurtulmuş, T. Ö., 2006. Application of electrical resistivity tomography technique for investigation of landslides: a case from Turkey. J. Environ. Geol., 50(2), 147-155.
Druskin, V. J. S. J. o. A. M., 1998. On the uniqueness of inverse problems from incomplete boundary data. 58(5), 1591-1603.
Du, Q., Wang, D. and Zhu, L., 2009. On mesh geometry and stiffness matrix conditioning for general finite element spaces. SIAM J. Numer. Anal., 47(2), 1421-1444.
Eissa, R., Cassidy, N., Pringle, J. and Stimpson, I., 2020. Electrical resistivity tomography array comparisons to detect cleared-wall foundations in brownfield sites. Q. J. Eng. Geol., 53(1), 137-144.
Elawadi, E. A., 2003. Cavity detection by integrated geophysical methods.
Estivill-Castro, V., 2002. Why so many clustering algorithms: a position paper. SIGKDD Expl., 4(1), 65-75.
Fazzito, S. Y., Rapalini, A. E., Cortés, J. M. and Terrizzano, C. M. J. J. o. S. A. E. S., 2009. Characterization of Quaternary faults by electric resistivity tomography in the Andean Precordillera of Western Argentina. 28(3), 217-228.
Festa, V., Fiore, A., Parise, M., Siniscalchi, A. and Studies, K., 2012. Sinkhole evolution in the Apulian karst of southern Italy: a case study, with some considerations on sinkhole hazards. J Caves Karst Stud., 74(2), 137-147.
Flechsig, C., Fabig, T., Rücker, C. and Schütze, C., 2010. Geoelectrical investigations in the Cheb Basin/W-Bohemia: an approach to evaluate the near-surface conductivity structure. Studia Geophys. Geod., 54(3), 443-463.
Friedel, S., 2003. Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach. Geophys. J. Int., 153(2), 305-316.
Gabarrón, M., Martínez-Pagán, P., Martínez-Segura, M. A., Bueso, M. C., Martínez-Martínez, S., Faz, Á. and Acosta, J. A. J. M., 2020. Electrical resistivity tomography as a support tool for physicochemical properties assessment of near-surface waste materials in a mining tailing pond (El Gorguel, SE Spain). Minerals, 10(6), 559.
Gallardo, L. A. and Meju, M. A., 2004. Joint two‐dimensional DC resistivity and seismic travel time inversion with cross‐gradients constraints. Geophys. Res. Solid Earth, 109(B3).
Geuzaine, C. and Remacle, J. F., 2009. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐and post‐processing facilities. Int. J. Numer. Meth. Eng., 79(11), 1309-1331.
Giroux, B. and Larouche, B., 2013. Task-parallel implementation of 3D shortest path raytracing for geophysical applications. Comput. and Geosci., 54, 130-141.
Gómez‐Ortiz, D., Martín‐Velázquez, S., Martín‐Crespo, T., De Ignacio‐San José, C. and Lillo, 2010. Application of electrical resistivity tomography to the environmental characterization of abandoned massive sulphide mine ponds (Iberian Pyrite Belt, SW Spain). Near Surf. Geophys., 8(1), 65-74.
Gourdol, L., Clément, R., Juilleret, J., Pfister, L. and Hissler, C., 2018a. Large-scale ERT surveys for investigating shallow regolith properties and architecture. Hydrol. Earth Syst. Sci. Discuss., 2018, 1-39.
Gourdol, L., Clément, R., Juilleret, J., Pfister, L. and Hissler, C., 2018b. Large-scale ERT surveys for investigating shallow regolith properties and architecture. Hydrol. Earth. Syst. Sci, 1-39.
Guglielmetti, L., Comina, C., Abdelfettah, Y., Schill, E. and Mandrone, G., 2013. Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region. Tectonophysics, 608, 1025-1036.
Günther, T., 2005. Inversion methods and resolution analysis for the 2D/3D reconstruction of resistivity structures from DC measurements, Freiberg University of Mining and Technology.
Günther, T. and Martin, T., 2016. Spectral two-dimensional inversion of frequency-domain induced polarization data from a mining slag heap. J. Appl. Geophys., 135, 436-448.
Günther, T. and Rücker, C., 2015. Boundless Electrical Resistivity Tomography BERT 2–the user tutorial.
Günther, T., Rücker, C. and Spitzer, K., 2006a. Three-dimensional modelling and inversion of DC resistivity data incorporating topography—II. Inversion. Geophys. J. Int., 166(2), 506-517.
Günther, T., Rücker, C. and Spitzer, K. J. G. J. I., 2006b. Three-dimensional modelling and inversion of DC resistivity data incorporating topography—II. Inversion. 166(2), 506-517.
Hansen, P. C., 1992. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev., 34(4), 561-580.
Hassan, A. A., Kadhim, E. H. and Ahmed, M. T., 2018. Performance of Various Electrical Resistivity Configurations for Detecting Buried Tunnels Using 2D Electrical Resistivity Tomography Modelling. Diyala J. Eng. Sc., 11(3), 14-21.
Hauck, C., Böttcher, M. and Maurer, H., 2011. A new model for estimating subsurface ice content based on combined electrical and seismic data sets. J. Cryosph., 5(2), 453-468.
Hauck, C. and Mühll, D. V., 2003. Inversion and interpretation of two‐dimensional geoelectrical measurements for detecting permafrost in mountainous regions. Permafr. Periglac. Process., 14(4), 305-318.
Hayley, K., Bentley, L. R., Gharibi, M. and Nightingale, M., 2007. Low temperature dependence of electrical resistivity: Implications for near surface geophysical monitoring. J. Geophys. Res., 34(18).
Heagy, L. J., Cockett, R., Kang, S., Rosenkjaer, G. K. and Oldenburg, D. W., 2017. A framework for simulation and inversion in electromagnetics. Comput. and Geosci., 107, 1-19.
Hellman, K., Johansson, S., Olsson, P. and Dahlin, T., 2016. Resistivity inversion software comparison, Near Surface Geoscience 2016-22nd European Meeting of Environmental and Engineering Geophysics. European Association of Geoscientists & Engineers.
Hellman, K., Ronczka, M., Günther, T., Wennermark, M., Rücker, C. and Dahlin, T., 2017. Structurally coupled inversion of ERT and refraction seismic data combined with cluster-based model integration. J. App. Geophy., 143, 169-181.
Hermawan, O. R. and Putra, D. P. E., 2016. the effectiveness of wenner-schlumberger and dipole-dipole array of 2d geoelectrical survey to detect the occurring of groundwater in the gunung kidul karst aquifer system, Yogyakarta, Indonesia. J. Appl. Geol., 1(2), 71-81.
Hilbich, C., Marescot, L., Hauck, C., Loke, M. and Mäusbacher, R., 2009. Applicability of electrical resistivity tomography monitoring to coarse blocky and ice‐rich permafrost landforms. Permafr. Periglac. Process., 20(3), 269-284.
Ho, G.-R., Ping-Yu, C., Lo, W., Chia-Mei, L. and Sheng-Rong, S., 2014. New evidence of regional geological structures inferred from reprocessing and resistivity data interpretation in the Chingshui-Sanshing-Hanchi area of Southwestern Ilan County, NE Taiwan. Terr. Atoms. Ocean Sci., 25(4), 491.
Hsu, H.-L., Yanites, B. J., Chen, C.-c. and Chen, Y.-G., 2010. Bedrock detection using 2D electrical resistivity imaging along the Peikang River, central Taiwan. Geomorphology, 114(3), 406-414.
Hunter, J. D., 2007. Matplotlib: A 2D graphics environment. Comput. Sci. Eng., 9(03), 90-95.
Hyman, J. M. and Shashkov, M., 1999. Mimetic discretizations for Maxwell′s equations. J. Comput. Phys., 151(2), 881-909.
Johnson, T. C., Slater, L. D., Ntarlagiannis, D., Day‐Lewis, F. D. and Elwaseif, M., 2012. Monitoring groundwater‐surface water interaction using time‐series and time‐frequency analysis of transient three‐dimensional electrical resistivity changes. Water Resour. Res., 48(7).
Jordi, C., Doetsch, J., Günther, T., Schmelzbach, C., Maurer, H. and Robertsson, J., 2020. Structural joint inversion on irregular meshes. Geophys. J. Int., 220(3), 1995-2008.
Kalscheuer, T., De los Ángeles García Juanatey, M., Meqbel, N. and Pedersen, L. B., 2010. Non-linear model error and resolution properties from two-dimensional single and joint inversions of direct current resistivity and radiomagnetotelluric data. Geophys. J. Int. , 182(3), 1174-1188.
Kang, S., Fournier, D., Werthmuller, D., Heagy, L. J. and Oldenburg, D., 2018. SimPEG-EM1D: gradient-based 1D inversion software for large-scale airborne electromagnetic data, AGU Fall Meeting Abstracts, pp. NS53A-0557.
Kang*, S., Cockett, R., Heagy, L. J. and Oldenburg, D. W., 2015. Moving between dimensions in electromagnetic inversions, SEG Technical Program Expanded Abstracts 2015. Society of Exploration Geophysicists, pp. 5000-5004.
Kearey, P., Brooks, M. and Hill, I., 2002. An introduction to geophysical exploration, 4. John Wiley & Sons.
Keller, G. V., 2017. Electrical properties of rocks and minerals. CRC Press.
Keller, G. V. and Carmichael, R., 1982. Electrical properties of rocks and minerals. CRC Handbook Physics Proporties Rocks, 1, 217-293.
Keller, G. V. and Frischknecht, F. C., 1966. Electrical methods in geophysical prospecting.
Kim, H. J. a. and Kim, Y. H., 2011. A unified transformation function for lower and upper bounding constraints on model parameters in electrical and electromagnetic inversion. Geophys., 8(1), 21-26.
Kim, J.-H., Yi, M.-J., Hwang, S.-H., Song, Y., Cho, S.-J. and Synn, J.-H., 2007. Integrated geophysical surveys for the safety evaluation of a ground subsidence zone in a small city. J. Geophys. Eng., 4(3), 332-347.
Klingler, S., Leven, C., Cirpka, O. A. and Dietrich, P., 2020. Anomaly index-driven optimization of direct-current geoelectric mapping surveys in large areas. J. Appl. Geophys., 176, 104002.
Kumar, D., Rao, V. A. and Sarma, V., 2014. Hydrogeological and geophysical study for deeper groundwater resource in quartzitic hard rock ridge region from 2D resistivity data. J. Earth Syst. Sci., 123(3), 531-543.
LaBrecque, D. J., Miletto, M., Daily, W., Ramirez, A. and Owen, E., 1996. The effects of noise on Occam’s inversion of resistivity tomography data. Geophys., 61(2), 538-548.
Lin, J. W.-B. J. B. o. t. A. M. S., 2012. Why Python is the next wave in earth sciences computing. Bull. Am. Meteorol. Soc., 93(12), 1823-1824.
Loke, M., 2004. Tutorial: 2-D and 3-D electrical imaging surveys. Geotomo Software, Malaysia.
Loke, M., 2013. Tutorial: 2-D and 3-D electrical imaging surveys. Geotomo Software Malaysia. Unpublished.
Loke, M. and Barker, R., 1996. Practical techniques for 3D resistivity surveys and data inversion1. Geophys. Prospect., 44(3), 499-523.
Loke, M., Chambers, J., Rucker, D., Kuras, O. and Wilkinson, P., 2013. Recent developments in the direct-current geoelectrical imaging method. Appl. Geophys., 95, 135-156.
Loke, M., Wilkinson, P. and Chambers, J., 2010. Fast computation of optimized electrode arrays for 2D resistivity surveys. Comput. Geosci., 36(11), 1414-1426.
Loke, M., Wilkinson, P., Chambers, J., Uhlemann, S. and Sorensen, J., 2015. Optimized arrays for 2-D resistivity survey lines with a large number of electrodes. J. App. Geophy., 112, 136-146.
Looms, M. C., Jensen, K. H., Binley, A. and Nielsen, L., 2008. Monitoring unsaturated flow and transport using cross‐borehole geophysical methods. J. Vadose Zone 7(1), 227-237.
Lowrie, W. and Fichtner, A., 2020. Fundamentals of geophysics. Cambridge University Press, Cambridge, UK.
MacQueen, J., 1967. Some methods for classification and analysis of multivariate observations, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Oakland, CA, USA, pp. 281-297.
Marr, D. and Hildreth, E., 1980. Theory of edge detection. Proc. Royal Soc. B., 207(1167), 187-217.
Martinez-Lopez, J., Rey, J., Duenas, J., Hidalgo, C. and Benavente, J., 2013. Electrical Tomography Applied to the Detection of Subsurface Cavites. J. Caves Karst. Stud., 75, 28-37.
Martorana, R., Fiandaca, G., Casas Ponsati, A., Cosentino, P. and Engineering, 2009. Comparative tests on different multi-electrode arrays using models in near-surface geophysics. J. App. Geophy., 6(1), 1-20.
Mary, B., Peruzzo, L., Boaga, J., Cenni, N., Schmutz, M., Wu, Y., Hubbard, S. S. and Cassiani, G., 2020. Time-lapse monitoring of root water uptake using electrical resistivity tomography and mise-à-la-masse: a vineyard infiltration experiment. J. Soil, 6(1), 95-114.
McGill, R., Tukey, J. W. and Larsen, W. A., 1978. Variations of box plots. Am. Stat. Assoc., 32(1), 12-16.
McGillivray, P. R., 1992. Forward modeling and inversion of DC resistivity and MMR data, University of British Columbia.
McGillivray, P. R. and Oldenburg, D., 1990. Method for Calculating Frechet Dererativies and Sensetivities for the Non-linear Inverse Problem: A Comparative Study. J. Geophys. Prospect., 38(5), 499-524.
Merriam, J., 2005. Injection electrode overprinting. Geophys. Eng., 10(4), 365-370.
Militzer, H., Rösler, R. and Lösch, W., 1979. Theoretical and experimental investigations for cavity research with geoelectrical resistivity methods. Geophys. Prospect., 27(3), 640-652.
Miller, C. R., Routh, P. S., Brosten, T. R. and McNamara, J., 2008. Application of time-lapse ERT imaging to watershed characterization. Geophys., 73(3), G7-G17.
Mitchell, M. A., 2020. Methodologies for the use of electrical and electromagnetic methods in complex, subterranean environments, University of British Columbia.
Mochales, T., Casas, A., Pueyo, E., Pueyo, O., Román, M., Pocoví, A., Soriano, M. and Ansón, D., 2008. Detection of underground cavities by combining gravity, magnetic and ground penetrating radar surveys: a case study from the Zaragoza area, NE Spain. Environ. Geol., 53(5), 1067-1077.
Mollaret, C., Wagner, F. M., Hilbich, C., Scapozza, C. and Hauck, C. J. F. i. E. S., 2020. Petrophysical joint inversion applied to alpine permafrost field sites to image subsurface ice, water, air, and rock contents. 8, 85.
Mufti, I. R., 1976. Finite-difference resistivity modeling for arbitrarily shaped two-dimensional structures. Geophysics, 41(1), 62-78.
Muhammad, F., Samgyu, P., Young, S. S., Ho Kim, J., Mohammad, T. and Adepelumi, A. A., 2012. Subsurface cavity detection in a karst environment using electrical resistivity (er): a case study from yongweol-ri, South Korea. Earth Sci. Res. , 16(1), 75-82.
Narayan, S., Dusseault, M. B. and Nobes, D. C., 1994. Inversion techniques applied to resistivity inverse problems. Inverse Probl., 10(3), 669.
Neumaier, A., 1998. Solving ill-conditioned and singular linear systems: A tutorial on regularization. J. Soc. Ind. Appl. Math. , 40(3), 636-666.
Neyamadpour, A., Wan Abdullah, W., Taib, S., Neyamadpour, B. and Engineering, 2010. Comparison of Wenner and dipole–dipole arrays in the study of an underground three-dimensional cavity. J. App. Geophy., 7(1), 30-40.
Nguyen, F., Garambois, S., Jongmans, D., Pirard, E. and Loke, M., 2005. Image processing of 2D resistivity data for imaging faults. J. Appl. Geophys., 57(4), 260-277.
Nickschick, T., Flechsig, C., Mrlina, J., Oppermann, F., Löbig, F. and Günther, T., 2019. Large-scale electrical resistivity tomography in the Cheb Basin (Eger Rift) at an International Continental Drilling Program (ICDP) monitoring site to image fluid-related structures. Solid Earth 10(6), 1951-1969.
Nimmer, R. E., Osiensky, J. L., Binley, A. M. and Williams, B. C., 2008. Three-dimensional effects causing artifacts in two-dimensional, cross-borehole, electrical imaging. Hydrol., 359(1-2), 59-70.
Okpoli, C. C., 2013. Sensitivity and resolution capacity of electrode configurations. Geophys. J. Int., 2013, 608037.
Oldenborger, G. A., Routh, P. S. and Knoll, M. D., 2005. Sensitivity of electrical resistivity tomography data to electrode position errors. Geophys. J. Int., 163(1), 1-9.
Oldenburg, D. W., Heagy, L. J., Kang, S. and Cockett, R., 2020. 3D electromagnetic modelling and inversion: a case for open source. J. Expl. Geophys., 51(1), 25-37.
Oldenburg, D. W. and Li, Y., 1999a. Estimating depth of investigation in dc resistivity and IP surveys. Geophys., 64(2), 403-416.
Oldenburg, D. W. and Li, Y., 1999b. Estimating depth of investigation in dc resistivity and IP surveys. Geophys, 64(2), 403-416.
Oldenburg, D. W. and Li, Y., 2005a. Inversion for applied geophysics: A tutorial. Near Surf. Geophys., 89-150.
Oldenburg, D. W. and Li, Y., 2005b. Inversion for applied geophysics: A tutorial. J Near-surface Geophys., 89-150.
Oldenburg, D. W. and Li, Y. J. N.-s. g., 2005c. Inversion for applied geophysics: A tutorial. 89-150.
Orlando, L., 2013. GPR to constrain ERT data inversion in cavity searching: Theoretical and practical applications in archeology. J. Appl. Geophy., 89, 35-47.
Park, M. K., Park, S., Yi, M.-J., Kim, C., Son, J.-S., Kim, J.-H. and Abraham, A. A., 2014. Application of electrical resistivity tomography (ERT) technique to detect underground cavities in a karst area of South Korea. Environ. Earth Sci., 71(6), 2797-2806.
Parker, R. L., 1977. Understanding inverse theory. Annu. Rev. Earth Planet. Sci., 5, 35.
Parsekian, A. D., Claes, N., Singha, K., Minsley, B. J., Carr, B., Voytek, E., Harmon, R., Kass, A., Carey, A. and Thayer, D., 2017. Comparing measurement response and inverted results of electrical resistivity tomography instruments. Environ. Eng. Geophys., 22(3), 249-266.
Peng, R. D., 2011. Reproducible research in computational science. Science, 334(6060), 1226-1227.
Portniaguine, O. and Zhdanov, M. S., 1999a. Focusing geophysical inversion images. Geophys., 64(3), 874-887.
Portniaguine, O. and Zhdanov, M. S., 1999b. Focusing geophysical inversion images. Geophys, 64(3), 874-887.
Rochlitz, R., Skibbe, N. and Günther, T., 2019. custEM: Customizable finite-element simulation of complex controlled-source electromagnetic data. Geophys., 84(2), F17-F33.
Rubin, Y. and Hubbard, S. S., 2006. Hydrogeophysics, 50. Springer Science & Business Media.
Rücker, C., 2010. Advanced electrical resistivity modelling and inversion using unstructured discretization, Universität Leipzig.
Rücker, C., Günther, T. and Spitzer, K., 2006a. Three-dimensional modelling and inversion of dc resistivity data incorporating topography—I. Modelling. Geophysical Journal International, 166(2), 495-505.
Rücker, C., Günther, T. and Spitzer, K., 2006b. Three-dimensional modelling and inversion of dc resistivity data incorporating topography—I. Modelling. Geophys. J. Int., 166(2), 495-505.
Rücker, C., Günther, T. and Wagner, F. M., 2017a. pyGIMLi: An open-source library for modelling and inversion in geophysics. Comput. and Geosci., 109, 106-123.
Rücker, C., Günther, T., Wagner, F. M. J. C. and Geosciences, 2017b. pyGIMLi: An open-source library for modelling and inversion in geophysics. 109, 106-123.
Rucker, D. F., Loke, M. H., Levitt, M. T. and Noonan, G. E., 2010. Electrical-resistivity characterization of an industrial site using long electrodes. Geophys., 75(4), WA95-WA104.
Sack, J.-R. and Urrutia, J., 1999. Handbook of computational geometry. Elsevier.
Santos, F. A. M. and Afonso, A. R. A., 2005. Detection and 2D modelling of cavities using pole–dipole array. J. Environ. Geol., 48(1), 108-116.
Saribudak, M., Hawkins, A. and Stoker, K., 2012. Do air-filled caves cause high resistivity anomalies? A six-case study from the Edwards Aquifer Recharge Zone in San Antonio, Texas. Houst. Geol. Soc.Bull, 54, 41-49.
Satitpittakul, A., Vachiratienchai, C. and Siripunvaraporn, W., 2013. Factors influencing cavity detection in Karst terrain on two-dimensional (2-D) direct current (DC) resistivity survey: A case study from the western part of Thailand. Eng. Geol., 152(1), 162-171.
Scapozza, C. and Laigre, L., 2014. The contribution of Electrical Resistivity Tomography (ERT) in Alpine dynamics geomorphology: case studies from the Swiss Alps. Geomorphol. Relief, Process. Environ., 20(1), 27-42.
Scott, J., Barker, R. and Peacock, S., 2000. Combined seismic refraction and electrical imaging, EAGE meeting.
Seaton, W. J. and Burbey, T. J., 2002a. Evaluation of two-dimensional resistivity methods in a fractured crystalline-rock terrane. J Appl Geophys, 51(1), 21-41.
Seaton, W. J. and Burbey, T. J., 2002b. Evaluation of two-dimensional resistivity methods in a fractured crystalline-rock terrane. J. App. Geophy., 51(1), 21-41.
Sharma, S. and Verma, G. K., 2015. Inversion of electrical resistivity data: a review. Comput. Sci. Eng., 9(4), 400-406.
Sharma, S. and Verma, S., 2011. Solutions of the inherent problem of the equivalence in direct current resistivity and electromagnetic methods through global optimization and joint inversion by successive refinement of model space. Geophys. Prospect., 59(4), 760-776.
Shewchuk, J. R., 1996. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator, Workshop on Applied Computational Geometry. Springer, pp. 203-222.
Si, H., 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw., 41(2), 1-36.
Simandoux, P., 1963. Dielectric measurements on porous media, application to the measurements of water saturation: study of behavior of argillaceous formations. 18(Supplementary Issue), 193-215.
Simpson, J. M. and Heinson, G., 2020. Synthetic modelling of downhole resistivity data to improve interpretation of basin morphology from magnetotelluric inversion. Earth Planets Space, 72, 1-21.
Slater, L., Binley, A., Daily, W. and Johnson, R., 2000. Cross-hole electrical imaging of a controlled saline tracer injection. Appl. Geophys., 44(2-3), 85-102.
Smith, R. C. and Sjogren, D. B., 2006. An evaluation of electrical resistivity imaging (ERI) in Quaternary sediments, southern Alberta, Canada. Geosphere 2(6), 287-298.
Telford, W. M., Telford, W., Geldart, L. and Sheriff, R. E., 1990. Applied geophysics. Cambridge university press.
Tikhonov, A. N., Goncharsky, A., Stepanov, V. and Yagola, A. G., 2013. Numerical methods for the solution of ill-posed problems, 328. Springer Science and Business Media.
Timur, A., 1968. Velocity of compressional waves in porous media at permafrost temperatures. Geophys., 33(4), 584-595.
Tizro, A. T., Voudouris, K. S., Salehzade, M. and Mashayekhi, H., 2010. Hydrogeological framework and estimation of aquifer hydraulic parameters using geoelectrical data: a case study from West Iran. Hydrogeol. , 18(4), 917-929.
Tomita, J. T., da Silva, L. M. and da Silva, D. T., 2012. Comparison between unstructured and structured meshes with different turbulence models for a high pressure turbine application, Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, pp. 1633-1645.
Tronicke, J., Holliger, K., Barrash, W. and Knoll, M. D., 2004. Multivariate analysis of cross‐hole georadar velocity and attenuation tomograms for aquifer zonation. Water Resour., 40(1).
Tsai, J. P., Chang, P. Y., Yeh, T. C. J., Chang, L. C. and Hsiao, C. T., 2019. Constructing the Apparent Geological Model by Fusing Surface Resistivity Survey and Borehole Records. J. Groundw., 57(4), 590-601.
Tso, C.-H. M., Kuras, O., Wilkinson, P. B., Uhlemann, S., Chambers, J. E., Meldrum, P. I., Graham, J., Sherlock, E. F. and Binley, A., 2017a. Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys. Journal of Applied Geophysics, 146, 103-119.
Tso, C.-H. M., Kuras, O., Wilkinson, P. B., Uhlemann, S., Chambers, J. E., Meldrum, P. I., Graham, J., Sherlock, E. F. and Binley, A., 2017b. Improved characterization and modelling of measurement errors in electrical resistivity tomography (ERT) surveys. Appl. Geophys., 146, 103-119.
Udphuay, S., Günther, T., Everett, M. E., Warden, R. R. and Briaud, J.-L., 2011. Three-dimensional resistivity tomography in extreme coastal terrain amidst dense cultural signals: application to cliff stability assessment at the historic D-Day site. Geophys. J. Int., 185(1), 201-220.
Ullah, S., Zhou, B. and Iqbal, M. A., 2020. A novel electrode array for resistivity imaging to assess groundwater resource: Field test. J. Environ. Eng. Geophys., 15(4), 197-207.
Vafidis, A., Economou, N., Ganiatsos, Y., Manakou, M., Poulioudis, G., Sourlas, G., Vrontaki, E., Sarris, A., Guy, M. and Kalpaxis, T., 2005. Integrated geophysical studies at ancient Itanos (Greece). J. Archaeol. Sci., 32(7), 1023-1036.
Van Schoor, M., 2002. Detection of sinkholes using 2D electrical resistivity imaging. J. Appl. Geophy., 50(4), 393-399.
Verdet, C., Anguy, Y., Sirieix, C., Clément, R. and Gaborieau, C., 2018. On the effect of electrode finiteness in small-scale electrical resistivity imaging. Geophysics, 83(6), EN39-EN52.
Vozoff, K. and Jupp, D., 1975. Joint inversion of geophysical data. Geophys. J. Int., 42(3), 977-991.
Wagner, F., Mollaret, C., Günther, T., Kemna, A. and Hauck, C., 2019. Quantitative imaging of water, ice and air in permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data. Geophys. J. Int., 219(3), 1866-1875.
Wagner, F. M. and Uhlemann, S., 2021. An overview of multimethod imaging approaches in environmental geophysics. Adv. Geophys. , 62, 1-72.
Ward, W. O., Wilkinson, P. B., Chambers, J. E., Oxby, L. S. and Bai, L., 2014. Distribution-based fuzzy clustering of electrical resistivity tomography images for interface detection. Geophys., 197(1), 310-321.
Wellmann, F. and Caumon, G., 2018. 3-D Structural geological models: Concepts, methods, and uncertainties, Adv. Geophys. Elsevier, pp. 1-121.
Wen, X., Jing, M., Cai, H., Zhang, Y., Hu, S., Teng, Y., Liu, G., Lan, L. and Lu, H. J. I. J. o. E. P., 2020. Temperature characteristics and influence of water-saturated soil resistivity on the HVDC grounding electrode temperature rise. Int. J. Electr. Power Energy Syst., 118, 105720.
Werban, U., Attia al Hagrey, S. and Rabbel, W., 2008. Monitoring of root‐zone water content in the laboratory by 2D geoelectrical tomography. J. Plant Nutr. Soil Sci., 171(6), 927-935.
Whiteley, J., Chambers, J., Uhlemann, S., Boyd, J., Cimpoiasu, M., Holmes, J., Inauen, C., Watlet, A., Hawley-Sibbett, L. and Sujitapan, C., 2020. Landslide monitoring using seismic refraction tomography–The importance of incorporating topographic variations. J. Eng. Geol., 268, 105525.
Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M., Guy, R. T., Haddock, S. H., Huff, K. D., Mitchell, I. M. and Plumbley, M. D., 2014. Best practices for scientific computing. PLoS Comput. Biol., 12(1), e1001745.
Wyllie, M. R. J., Gregory, A. R. and Gardner, L. W., 1956. Elastic wave velocities in heterogeneous and porous media. Geophys., 21(1), 41-70.
Yang, X., Chen, X., Carrigan, C. R. and Ramirez, A. L., 2014. Uncertainty quantification of CO2 saturation estimated from electrical resistance tomography data at the Cranfield site. Int. J. Greenh. Gas Control., 27, 59-68.
Zhang, G., Zhang, G.-B., Chen, C.-c., Chang, P.-Y., Wang, T.-P., Yen, H.-Y., Dong, J.-J., Ni, C.-F., Chen, S.-C. and Chen, C.-W., 2016. Imaging rainfall infiltration processes with the time-lapse electrical resistivity imaging method. Pure Appl. Geophys., 173(6), 2227-2239.
Zhang, Y., Wang, B., Lin, G., Ouyang, Y., Wang, T., Xu, S., Song, L. and Wang, R., 2020. Three-Dimensional P-wave Velocity Structure of the Zhuxi Ore Deposit, South China Revealed by Control-Source First-Arrival Tomography. Minerals, 10(2), 148.
Zhao, D., Hasegawa, A. and Kanamori, H., 1994. Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events. J. Geophys. Res. Solid Earth, 99(B11), 22313-22329.
Zhao, D., Yanada, T., Hasegawa, A., Umino, N. and Wei, W., 2012. Imaging the subducting slabs and mantle upwelling under the Japan Islands. Geophys. J. Int., 190(2), 816-828.
Zhou, B. and Dahlin, T., 2003. Properties and effects of measurement errors on 2D resistivity imaging surveying. Near Surf. Geophys., 1(3), 105-117.
Zhou, B. and Kanl, I., 2018a. Electrical resistivity tomography: a subsurface-imaging technique, Applied geophysics with case studies on environmental, exploration and engineering geophysics. IntechOpen London, UK.
Zhou, B. and Kanl, I., 2018b. Electrical resistivity tomography: A subsurface imaging technique, Applied geophysics with case studies on environmental, exploration and engineering geophysics. IntechOpen London, UK.
Zhou, J., Revil, A., Karaoulis, M., Hale, D., Doetsch, J. and Cuttler, S., 2014. Image-guided inversion of electrical resistivity data. Geophys., 197(1), 292-309.
Zhou, W., Beck, B. F. and Adams, A. L., 2002. Effective electrode array in mapping karst hazards in electrical resistivity tomography. J. Environ. Geol., 42(8), 922-928.
Scott, J., Barker, R. and Peacock, S., (2000). Combined seismic refraction and electrical imaging, EAGE meeting.
Seaton, W. J. and Burbey, T. J., (2002). Evaluation of two-dimensional resistivity methods in a fractured crystalline-rock terrane. J. App. Geophy., 51(1), 21-41.
Sharma, S. and Verma, G. K., (2015). Inversion of electrical resistivity data: a review. Comput. Sci. Eng., 9(4), 400-406.
Sharma, S. and Verma, S., (2011). Solutions of the inherent problem of the equivalence in direct current resistivity and electromagnetic methods through global optimization and joint inversion by successive refinement of model space. Geophys. Prospect., 59(4), 760-776.
Shewchuk, J. R., (1996). Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator, Workshop on Applied Computational Geometry. Springer, pp. 203-222.
Si, H., (2015). TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw., 41(2), 1-36.
Simandoux, P., (1963). Dielectric measurements on porous media, application to the measurements of water saturation: study of behavior of argillaceous formations. 18(Supplementary Issue), 193-215.
Simpson, J. M. and Heinson, G., (2020). Synthetic modelling of downhole resistivity data to improve interpretation of basin morphology from magnetotelluric inversion. Earth Planets Space, 72, 1-21.
Slater, L., Binley, A., Daily, W. and Johnson, R., (2000). Cross-hole electrical imaging of a controlled saline tracer injection. Appl. Geophys., 44(2-3), 85-102.
Smith, R. C. and Sjogren, D. B., (2006). An evaluation of electrical resistivity imaging (ERI) in Quaternary sediments, southern Alberta, Canada. Geosphere 2(6), 287-298.
Telford, W. M., Telford, W., Geldart, L. and Sheriff, R. E., (1990). Applied geophysics. Cambridge university press.
Tikhonov, A. N., Goncharsky, A., Stepanov, V. and Yagola, A. G., (2013). Numerical methods for the solution of ill-posed problems, 328. Springer Science and Business Media.
Timur, A., (1968). Velocity of compressional waves in porous media at permafrost temperatures. Geophys., 33(4), 584-595.
Tizro, A. T., Voudouris, K. S., Salehzade, M. and Mashayekhi, H., (2010). Hydrogeological framework and estimation of aquifer hydraulic parameters using geoelectrical data: a case study from West Iran. Hydrogeol. , 18(4), 917-929.
Tomita, J. T., da Silva, L. M. and da Silva, D. T., (2012). Comparison between unstructured and structured meshes with different turbulence models for a high pressure turbine application, Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, pp. 1633-1645.
Tronicke, J., Holliger, K., Barrash, W. and Knoll, M. D., (2004). Multivariate analysis of cross‐hole georadar velocity and attenuation tomograms for aquifer zonation. Water Resour., 40(1).
Tsai, J. P., Chang, P. Y., Yeh, T. C., Chang, L. C. and Hsiao, C. T., (2019). Constructing the Apparent Geological Model by Fusing Surface Resistivity Survey and Borehole Records. J. Groundw., 57(4), 590-601.
Tso, C.-H. M., Kuras, O., Wilkinson, P. B., Uhlemann, S., Chambers, J. E., Meldrum, P. I., Graham, J., Sherlock, E. F. and Binley, A., (2017). Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys. J. Appl. Geophys., 146, 103-119.
Udphuay, S., Günther, T., Everett, M. E., Warden, R. R. and Briaud, J.-L., (2011). Three-dimensional resistivity tomography in extreme coastal terrain amidst dense cultural signals: application to cliff stability assessment at the historic D-Day site. Geophys. J. Int., 185(1), 201-220.
Ullah, S., Zhou, B. and Iqbal, M. A., (2020). A novel electrode array for resistivity imaging to assess groundwater resource: Field test. J. Environ. Eng. Geophys., 15(4), 197-207.
Vafidis, A., Economou, N., Ganiatsos, Y., Manakou, M., Poulioudis, G., Sourlas, G., Vrontaki, E., Sarris, A., Guy, M. and Kalpaxis, T., (2005). Integrated geophysical studies at ancient Itanos (Greece). J. Archaeol. Sci., 32(7), 1023-1036.
Van Schoor, M., (2002). Detection of sinkholes using 2D electrical resistivity imaging. J. Appl. Geophy., 50(4), 393-399.
Verdet, C., Anguy, Y., Sirieix, C., Clément, R. and Gaborieau, C., (2018). On the effect of electrode finiteness in small-scale electrical resistivity imaging. Geophysics, 83(6), EN39-EN52.
Vozoff, K. and Jupp, D., (1975). Joint inversion of geophysical data. Geophys. J. Int., 42(3), 977-991.
Wagner, F., Mollaret, C., Günther, T., Kemna, A. and Hauck, C., (2019). Quantitative imaging of water, ice and air in permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data. Geophys. J. Int., 219(3), 1866-1875.
Wagner, F. M. and Uhlemann, S., (2021). An overview of multimethod imaging approaches in environmental geophysics. Adv. Geophys. , 62, 1-72.
Ward, W. O., Wilkinson, P. B., Chambers, J. E., Oxby, L. S. and Bai, L., (2014). Distribution-based fuzzy clustering of electrical resistivity tomography images for interface detection. Geophys., 197(1), 310-321.
Wellmann, F. and Caumon, G., (2018). 3-D Structural geological models: Concepts, methods, and uncertainties, Adv. Geophys. Elsevier, pp. 1-121.
Wen, X., Jing, M., Cai, H., Zhang, Y., Hu, S., Teng, Y., Liu, G., Lan, L. and Lu, H., (2020). Temperature characteristics and influence of water-saturated soil resistivity on the HVDC grounding electrode temperature rise. Int. J. Electr. Power Energy Syst., 118, 105720.
Werban, U., Attia al Hagrey, S. and Rabbel, W., (2008). Monitoring of root‐zone water content in the laboratory by 2D geoelectrical tomography. J. Plant Nutr. Soil Sci., 171(6), 927-935.
Whiteley, J., Chambers, J., Uhlemann, S., Boyd, J., Cimpoiasu, M., Holmes, J., Inauen, C., Watlet, A., Hawley-Sibbett, L. and Sujitapan, C., (2020). Landslide monitoring using seismic refraction tomography–The importance of incorporating topographic variations. J. Eng. Geol., 268, 105525.
Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M., Guy, R. T., Haddock, S. H., Huff, K. D., Mitchell, I. M. and Plumbley, M. D., (2014). Best practices for scientific computing. PLoS Comput. Biol., 12(1), e1001745.
Wyllie, M. R. J., Gregory, A. R. and Gardner, L. W., (1956). Elastic wave velocities in heterogeneous and porous media. Geophys., 21(1), 41-70.
Yang, X., Chen, X., Carrigan, C. R. and Ramirez, A. L., (2014). Uncertainty quantification of CO2 saturation estimated from electrical resistance tomography data at the Cranfield site. Int. J. Greenh. Gas Control., 27, 59-68.
Zhang, G., Zhang, G.-B., Chen, C.-c., Chang, P.-Y., Wang, T.-P., Yen, H.-Y., Dong, J.-J., Ni, C.-F., Chen, S.-C. and Chen, C.-W., (2016). Imaging rainfall infiltration processes with the time-lapse electrical resistivity imaging method. Pure Appl. Geophys., 173(6), 2227-2239.
Zhang, Y., Wang, B., Lin, G., Ouyang, Y., Wang, T., Xu, S., Song, L. and Wang, R., (2020). Three-Dimensional P-wave Velocity Structure of the Zhuxi Ore Deposit, South China Revealed by Control-Source First-Arrival Tomography. Minerals, 10(2), 148.
Zhao, D., Hasegawa, A. and Kanamori, H., (1994). Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events. J. Geophys. Res. Solid Earth, 99(B11), 22313-22329.
Zhao, D., Yanada, T., Hasegawa, A., Umino, N. and Wei, W., (2012). Imaging the subducting slabs and mantle upwelling under the Japan Islands. Geophys. J. Int., 190(2), 816-828.
Zhou, B. and Dahlin, T., (2003). Properties and effects of measurement errors on 2D resistivity imaging surveying. Near Surf. Geophys., 1(3), 105-117.
Zhou, B. and Kanl, I., (2018). Electrical resistivity tomography: a subsurface-imaging technique, Applied geophysics with case studies on environmental, exploration and engineering geophysics. IntechOpen London, UK.
Zhou, J., Revil, A., Karaoulis, M., Hale, D., Doetsch, J. and Cuttler, S., (2014). Image-guided inversion of electrical resistivity data. Geophys., 197(1), 292-309.
Zhou, W., Beck, B. F. and Adams, A. L., (2002). Effective electrode array in mapping karst hazards in electrical resistivity tomography. J. Environ. Geol., 42(8), 922-928.



指導教授 張竝瑜(Ping-Yu Chang) 審核日期 2023-2-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明