博碩士論文 107821601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.21.97.61
姓名 伊凡緹(Indira Rizqita Ivanesthi)  查詢紙本館藏   畢業系所 生命科學系
論文名稱
(Functional characterization of a noncanonical ProRS in Toxoplasma gondii)
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
★ Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins★ Recognition of tRNA His isoacceptors by human HisRS isoforms
★ Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P★ tRNA aminoacylation by a naturally occurring mini-AlaRS
★ Functional Repurposing of C-Ala Domains★ Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase
★ 探討Alanyl-tRNA synthetase的演化及專一性★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討
★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能★ 探討酵母菌Valyl-tRNA synthetase的生化活性
★ 酵母菌轉譯起始機制的研究★ 酵母菌GRS1基因的轉譯起始機制之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) Aminoacyl–tRNA synthetases (aaRSs) 是一群古老的酵素,它們的主要功能是
將一個胺基酸接到相對應的tRNA,接著aa-tRNA會被送去核醣體參與蛋白質合成。
在真核細胞內,蛋白質合成發生在細胞質及胞器(例如粒線體),因此細胞會合成二
套aaRSs,其中一套作用在細胞質,另一套作用在粒腺體。一般而言,對應一個特
定胺基酸的細胞質及粒線體aaRSs是由二個不同的細胞核基因解碼,但是也有少數
例外。在本研究中我們發現弓形蟲(Toxoplasma gondii) 只有一個 prolyl-tRNA
synthetase (TgProRS)基因,但是有二個不同的tRNAPro (一個是E-type,另一個是Ptype),
細胞核基因解碼的tRNAPro作用在細胞質及粒線體,它的序列屬於E-type;
頂質體基因解碼的tRNAPro作用在頂質體, 它的序列屬於P-type。序列比對及親緣演
化關係顯示TgProRS屬於 E-type ProRS,胺醯化活性測試也顯示這個酵素能有效地
胺醯化E-type tRNAPro,但是胺醯化 P-type tRNAPro的效率則明顯偏低。可是,互補
試驗顯示這個酵素能有效取代酵母菌粒線體ProRS (P-type ProRS),這也顯示這個酵
素能胺醯化P-type tRNAPro到某一個程度。總而言之,我們的研究結果顯示TgProRS
是一個非典型的ProRS,能同時胺醯化P-type及E-type tRNAsPr
摘要(英) Aminoacyl–tRNA synthetases (aaRSs) belong to a group of ancient enzymes that
plays a key role in protein synthesis by attaching a specific amino acid to its cognate tRNA.
In eukaryotes, protein synthesis occurs not only in the cytoplasm but also in organelles. Thus,
two distinct sets of aaRSs are required, one for the cytoplasm and the other for organelles.
In most cases, the cytoplasmic and organellar isoforms of a given aaRS are encoded by two
different nuclear genes, each recognizing its own tRNA isoacceptors. In this research we
found that Toxoplasma gondii contains only one nuclear prolyl-tRNA synthetase (TgProRS)
gene, but it contains two different tRNAPro isoacceptors, a nuclear-encoded E-type tRNAPro
(tRNAn
Pro), which functions in the cytoplasm and mitochondria, and an apicoplast-encoded
P-type tRNAPro (tRNAa
Pro), which functions in apicoplast. Sequence alignment and
phylogenetic analysisindicated that TgProRS possesses the unique C-terminal appended
domain that is unique to an E-type ProRS. Amininoacylation assays showed that TgProRS
can efficiently charge yeast tRNAPro, which represents an E-type tRNAPro, but it can hardly
charge E. coli tRNAPro and B. thuringiensis tRNAPro, both of which represent a P-type
tRNAPro. However, contrary to our expectations, TgProRS robustly rescued a yeast
mitochondrial ProRS knockout strain when it was overexpressed, suggesting that TgProRS
can charge the yeast mitochondrial P-type tRNAPro to a level sufficient to maintain normal
mitochondrial function. Our results suggest that TgProRS is a noncanonical ProRS that
charges both the P- and E-types of tRNAPro
關鍵字(中) ★ aminoacyl-tRNA synthetase
★ genetic code
★ protein synthesis
★ translation
★ tRNA
關鍵字(英) ★ aminoacyl-tRNA synthetase
★ genetic code
★ protein synthesis
★ translation
★ tRNA
論文目次 ABSTRACT (in Chinese)…………………………………………………………………………… i
ABSTRACT…………………………………………………………………………………….…iii
ACKNOWLEDGEMENT…………………………………………………………………………iv
TABLE OF CONTENT…………………………………………………………………………….v
LIST OF FIGURES……………………………………………………………………………….vii
ABBREVIATION………………………………………………………………………………..viii
CHAPTER I INTRODUCTION 1
1.1 Aminoacyl-tRNA synthetase 1
1.2 Prolyl-tRNA synthetase 1
1.3 The identity element tRNAPro and its recognition by ProRS 2
1.4 Toxoplasma gondii ProRS and tRNAsPro 3
1.5 Specific aim 4
CHAPTER II 5
MATERIALS and METHODS 5
2.1 Construction of yeast cytoplasmic ProRS knockout strain 5
2.2 Cloning of the genes encoding Toxoplasma gondii ProRS 5
2.3 Heterologous complementation assay for cytoplasmic ProRS activity 6
2.4 Heterologous complementation assay for mitochondrial ProRS activity 6
2.5 Western Blotting 7
2.6 Purification of TgProRS 7
2.7 In vitro Aminoacylation assay 8
2.8 In vitro transcription tRNA 8
CHAPTER III RESULTS 9
3.1 Sequence alignment analysis of TgProRS 9
3.2 TgProRS well expressed in E. coli and can be purified in homogeneity 9
3.3 TgProRS can charge yeast total tRNA in vitro 10
3.4 TgProRS barely charge E. coli total tRNA in vitro 11
3.5 TgProRS barely charge in vitro transcribed BttRNA in vitro 11
3.6 TgProRS can charge P-type tRNAPro in vivo 12
CHAPTER IV DISCUSSION 14
4.1 TgProRS prefer to charge E-type tRNAPro 14
4.2 TgProRS does not have conserved R residue to recognize P-type tRNAPro 15
4.3 Phylogenetic analysis of TgProRS 16
LIST OF FIGURES 18
REFERENCES 27
APPENDIX A 31
APPENDIX B 33
參考文獻 Ahel, I., C. Stathopoulos, A. Ambrogelly, A. Sauerwald, H. Toogood, T. Hartsch, and D. Söll. 2002.
′Cysteine activation is an inherent in vitro property of prolyl-tRNA synthetases′, J Biol Chem,
277: 34743-8.
Bartholow, T. G., B. L. Sanford, B. Cao, H. L. Schmit, J. M. Johnson, J. Meitzner, S. Bhattacharyya,
K. Musier-Forsyth, and S. Hati. 2014. ′Strictly conserved lysine of prolyl-tRNA Synthetase
editing domain facilitates binding and positioning of misacylated tRNA(Pro.)′, Biochemistry,
53: 1059-68.
Beuning, P. J., and K. Musier-Forsyth. 2001. ′Species-specific differences in amino acid editing by
class II prolyl-tRNA synthetase′, J Biol Chem, 276: 30779-85.
Bontell, I. L., N. Hall, K. E. Ashelford, J. P. Dubey, J. P. Boyle, J. Lindh, and J. E. Smith. 2009. ′Whole
genome sequencing of a natural recombinant Toxoplasma gondii strain reveals chromosome
sorting and local allelic variants′, Genome Biol, 10: R53.
Bullard, J. M., Y. C. Cai, B. Demeler, and L. L. Spremulli. 1999. ′Expression and characterization of a
human mitochondrial phenylalanyl-tRNA synthetase′, J Mol Biol, 288: 567-77.
Bullard, J. M., Y. C. Cai, and L. L. Spremulli. 2000. ′Expression and characterization of the human
mitochondrial leucyl-tRNA synthetase′, Biochim Biophys Acta, 1490: 245-58.
Burbaum, J. J., and P. Schimmel. 1991. ′Structural relationships and the classification of aminoacyltRNA
synthetases′, J Biol Chem, 266: 16965-8.
Burke, B., S. An, and K. Musier-Forsyth. 2008. ′Functional guanine-arginine interaction between
tRNAPro and prolyl-tRNA synthetase that couples binding and catalysis′, Biochim Biophys
Acta, 1784: 1222-5.
Burke, B., R. S. Lipman, K. Shiba, K. Musier-Forsyth, and Y. M. Hou. 2001. ′Divergent adaptation of
tRNA recognition by Methanococcus jannaschii prolyl-tRNA synthetase′, J Biol Chem, 276:
20286-91.
Burke, B., F. Yang, F. Chen, C. Stehlin, B. Chan, and K. Musier-Forsyth. 2000. ′Evolutionary
coadaptation of the motif 2--acceptor stem interaction in the class II prolyl-tRNA synthetase
system′, Biochemistry, 39: 15540-7.
Cavarelli, J., B. Rees, M. Ruff, J. C. Thierry, and D. Moras. 1993. ′Yeast tRNA(Asp) recognition by
35
its cognate class II aminoacyl-tRNA synthetase′, Nature, 362: 181-4.
Chang, C. P., G. Lin, S. J. Chen, W. C. Chiu, W. H. Chen, and C. C. Wang. 2008. ′Promoting the
formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain′, J
Biol Chem, 283: 30699-706.
Chang, C. P., Y. K. Tseng, C. Y. Ko, and C. C. Wang. 2012. ′Alanyl-tRNA synthetase genes of
Vanderwaltozyma polyspora arose from duplication of a dual-functional predecessor of
mitochondrial origin′, Nucleic Acids Res, 40: 314-22.
Chang, C. Y., C. I. Chien, C. P. Chang, B. C. Lin, and C. C. Wang. 2016. ′A WHEP Domain Regulates
the Dynamic Structure and Activity of Caenorhabditis elegans Glycyl-tRNA Synthetase′, J Biol
Chem, 291: 16567-75.
Crepin, T., A. Yaremchuk, M. Tukalo, and S. Cusack. 2006. ′Structures of two bacterial prolyl-tRNA
synthetases with and without a cis-editing domain′, Structure, 14: 1511-25.
Cusack, S. 1993. ′Sequence, structure and evolutionary relationships between class 2 aminoacyl-tRNA
synthetases: an update′, Biochimie, 75: 1077-81.
Cusack, S., A. Yaremchuk, I. Krikliviy, and M. Tukalo. 1998. ′tRNA(Pro) anticodon recognition by
Thermus thermophilus prolyl-tRNA synthetase′, Structure, 6: 101-8.
DeRocher, A. E., A. Karnataki, P. Vaney, and M. Parsons. 2012. ′Apicoplast targeting of a Toxoplasma
gondii transmembrane protein requires a cytosolic tyrosine-based motif′, Traffic, 13: 694-704.
Eriani, G., M. Delarue, O. Poch, J. Gangloff, and D. Moras. 1990. ′Partition of tRNA synthetases into
two classes based on mutually exclusive sets of sequence motifs′, Nature, 347: 203-6.
Eswarappa, S. M., A. A. Potdar, S. Sahoo, S. Sankar, and P. L. Fox. 2018. ′Metabolic origin of the
fused aminoacyl-tRNA synthetase, glutamyl-prolyl-tRNA synthetase′, J Biol Chem, 293:
19148-56.
Ibba, M., and D. Soll. 2000. ′Aminoacyl-tRNA synthesis′, Annu Rev Biochem, 69: 617-50.
Jain, V., M. Yogavel, H. Kikuchi, Y. Oshima, N. Hariguchi, M. Matsumoto, P. Goel, B. Touquet, R.
S. Jumani, F. Tacchini-Cottier, K. Harlos, C. D. Huston, M. A. Hakimi, and A. Sharma. 2017.
′Targeting Prolyl-tRNA Synthetase to Accelerate Drug Discovery against Malaria,
Leishmaniasis, Toxoplasmosis, Cryptosporidiosis, and Coccidiosis′, Structure, 25: 1495-
505.e6.
36
Jain, V., M. Yogavel, Y. Oshima, H. Kikuchi, B. Touquet, M. A. Hakimi, and A. Sharma. 2015.
′Structure of Prolyl-tRNA Synthetase-Halofuginone Complex Provides Basis for Development
of Drugs against Malaria and Toxoplasmosis′, Structure, 23: 819-29.
Kumar, S., G. Stecher, M. Li, C. Knyaz, and K. Tamura. 2018. ′MEGA X: Molecular Evolutionary
Genetics Analysis across Computing Platforms′, Mol Biol Evol, 35: 1547-49.
Lee, Y. H., Y. T. Lo, C. P. Chang, C. S. Yeh, T. H. Chang, Y. W. Chen, Y. K. Tseng, and C. C. Wang.
2019. ′Naturally occurring dual recognition of tRNA(His) substrates with and without a
universal identity element′, RNA Biol, 16: 1275-85.
Liu, H., R. Peterson, J. Kessler, and K. Musier-Forsyth. 1995. ′Molecular recognition of tRNA(Pro) by
Escherichia coli proline tRNA synthetase in vitro′, Nucleic Acids Res, 23: 165-9.
McClain, W. H., J. Schneider, and K. Gabriel. 1994. ′Distinctive acceptor-end structure and other
determinants of Escherichia coli tRNAPro identity′, Nucleic Acids Res, 22: 522-9.
Mishra, S., N. Malhotra, S. Kumari, M. Sato, H. Kikuchi, M. Yogavel, and A. Sharma. 2019.
′Conformational heterogeneity in apo and drug-bound structures of Toxoplasma gondii prolyltRNA
synthetase′, Acta Crystallogr F Struct Biol Commun, 75: 714-24.
Pino, P., E. Aeby, B. J. Foth, L. Sheiner, T. Soldati, A. Schneider, and D. Soldati-Favre. 2010.
′Mitochondrial translation in absence of local tRNA aminoacylation and methionyl tRNA Met
formylation in Apicomplexa′, Mol Microbiol, 76: 706-18.
Rajendran, V., P. Kalita, H. Shukla, A. Kumar, and T. Tripathi. 2018. ′Aminoacyl-tRNA synthetases:
Structure, function, and drug discovery′, Int J Biol Macromol, 111: 400-14.
Ruff, M., S. Krishnaswamy, M. Boeglin, A. Poterszman, A. Mitschler, A. Podjarny, B. Rees, J. C.
Thierry, and D. Moras. 1991. ′Class II aminoacyl transfer RNA synthetases: crystal structure of
yeast aspartyl-tRNA synthetase complexed with tRNA(Asp)′, Science, 252: 1682-9.
Sankaranarayanan, R., A. C. Dock-Bregeon, P. Romby, J. Caillet, M. Springer, B. Rees, C. Ehresmann,
B. Ehresmann, and D. Moras. 1999. ′The structure of threonyl-tRNA synthetase-tRNA(Thr)
complex enlightens its repressor activity and reveals an essential zinc ion in the active site′,
Cell, 97: 371-81.
Stehlin, C., B. Burke, F. Yang, H. Liu, K. Shiba, and K. Musier-Forsyth. 1998. ′Species-specific
differences in the operational RNA code for aminoacylation of tRNAPro′, Biochemistry, 37:
37
8605-13.
SternJohn, J., S. Hati, P. G. Siliciano, and K. Musier-Forsyth. 2007. ′Restoring species-specific
posttransfer editing activity to a synthetase with a defunct editing domain′, Proc Natl Acad Sci
U S A, 104: 2127-32.
Tang, H. L., L. S. Yeh, N. K. Chen, T. Ripmaster, P. Schimmel, and C. C. Wang. 2004. ′Translation of
a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons′, J Biol Chem,
279: 49656-63.
Whelan, S., and N. Goldman. 2001. ′A general empirical model of protein evolution derived from
multiple protein families using a maximum-likelihood approach′, Mol Biol Evol, 18: 691-9.
Wong, F. C., P. J. Beuning, M. Nagan, K. Shiba, and K. Musier-Forsyth. 2002. ′Functional role of the
prokaryotic proline-tRNA synthetase insertion domain in amino acid editing′, Biochemistry, 41:
7108-15.
Yaremchuk, A., S. Cusack, and M. Tukalo. 2000. ′Crystal structure of a eukaryote/archaeon-like protyltRNA
synthetase and its complex with tRNAPro(CGG)′, Embo j, 19: 4745-58.
指導教授 王健家(Chien-Chia Wang) 審核日期 2021-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明