博碩士論文 107821602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.191.254.0
姓名 賽提威(Aditya Aryandi Setiawibawa)  查詢紙本館藏   畢業系所 生命科學系
論文名稱
(Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P)
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
★ Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins★ Recognition of tRNA His isoacceptors by human HisRS isoforms
★ Functional characterization of a noncanonical ProRS in Toxoplasma gondii★ tRNA aminoacylation by a naturally occurring mini-AlaRS
★ Functional Repurposing of C-Ala Domains★ Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase
★ 探討Alanyl-tRNA synthetase的演化及專一性★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討
★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能★ 探討酵母菌Valyl-tRNA synthetase的生化活性
★ 酵母菌轉譯起始機制的研究★ 酵母菌GRS1基因的轉譯起始機制之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 核糖核酸酶P (RNase P)屬於核酸內切酶/核糖核蛋白家族,參與轉運核糖核酸(tRNA)的成熟作用。tRNA前驅物的成熟涉及 5′ 前導序列的切割、3′ 尾端序列的切割、內含子剪接、3′ 末端添加CCA、和轉錄後修飾。 RNase P 是負責在tRNA 前驅物的 +1 位置進行特定切割來去除 5′ 前導序列的關鍵酶。RNase P通常是由一個 RNA和一到多個蛋白質共同組成。然而,最近的研究發現了一種獨特形式的 RNase P,稱為純蛋白質 RNase P (protein-only RNase P, PRORP),它在真核生物中非常普遍。這引起了我們對不含催化性 RNA 成分的 RNase P 如何有效切割tRNA 前驅物的興趣。研究 PRORP 切割tRNA前驅物,特別是 tRNAHis 前驅物的 5′ 前導序列的機制,我們建構了酵母菌細胞核和酵母菌線粒體 RNase P 剔除菌株,用於細胞內功能測定,並純化異源 PRORP 用於體外切割測定,尤其是它們在 tRNAHis 中的切割位點(+1 或 -1 位置)。我們的研究結果顯示: Trypanosoma brucei PRORP (TbPRORP)、Aquifex aeolicus PRORP (AqPRORP) 和Chlamydomonas reinhardtii PRORP (CrPRORP) 可以互補酵母菌細胞核 RNase P剔除菌株,但不能互補酵母菌線粒體 RNase P 剔除菌株。此外,這些 PRORP 都不能切割 tRNAsHis在 -1 位置。更多深入研究持續進行中以全面了解PRORP的作用機制。
摘要(英) RNase P belongs to a universal endonuclease/ribonucleoprotein family which is involved in precursor tRNA maturation. Maturation of a precursor tRNA involves cleavage of the 5’ leader sequence, cleavage of the 3’ trailer sequence, intron splicing, CCA addition to the 3’ end, and post-transcriptional modifications. RNase P is the key enzyme responsible for removing the 5’ leader sequence by making a specific cut at the +1 position in the precursor tRNA. Normally, RNase P consists of an RNA subunit and one to several protein subunits. However, recent studies identified a unique form of RNase P, called protein-only RNase P (PRORP), that is highly ubiquitous in eukaryotic organisms. This attracts our attention as to how an RNase P without the catalytic RNA component can efficiently cleave and process precursor tRNA. To investigate the mechanism by which PRORP cleaves the 5’ leader sequence of a precursor tRNA, in particular tRNAHis, we constructed a yeast nuclear and a yeast mitochondrial RNase P knockout (KO) strain for in vivo functional assay, and purified the heterologous PRORPs for in vitro cleavage assay, with a particular emphasis on their cleavage site in tRNAHis (+1 or -1 position). We showed herein that Trypanosoma brucei PRORP (TbPRORP), Aquifex aeolicus PRORP (AqPRORP), and Chlamydomonas reinhardtii PRORP (CrPRORP) can rescue the yeast nuclear RNase P KO strain, but none of these PRORPs can rescue the yeast mitochondrial RNase P KO strain. Moreover, none of these PRORPs can cut tRNAsHis at -1 position. A more detailed analysis is underway to characterize these PRORPs.
關鍵字(中) ★ 核糖核酸酶P
★ 轉錄後修飾
★ 蛋白質生物合成
★ 轉譯
★ 轉運核糖核酸
關鍵字(英) ★ RNase P
★ posttranscriptional modification
★ protein synthesis
★ translation
★ tRNA
論文目次 ABSTRACT………………………………………………………………………ii
ABSTRACT (in Chinese) ………………………………………………….…...iii
ACKNOWLEDGEMENTS…………………………………………………….iv
TABLE OF CONTENT……………………………………………………. ….vi
LIST OF FIGURES……………………………………………………….........vii
ABBREVIATIONS…………………………………………………………….viii
CHAPTER I INTRODUCTION………………………………………….. ……1
1.1 Protein translation, transfer RNA, and aminoacyl tRNA synthetase……….1
1.2 Transfer RNA (tRNA) maturation process…………………………………1
1.3 Ribonuclease P (RNase P) ………………………………………………....2
1.4 Yeast RNase P………………………………………………………………3
1.5 Protein-only RNase P (PRORP) …………………………………………...4
1.6 Interesting PRORPs………………………………………………………...5
1.7 RNase P processing is part of tRNAHis……………………………………..6
1.8 Nanoarchaeum equitans…………………………………………………………..7
1.9 Specific Aims………………………………………………………………8
1.10 Hypothesis…………………………………………………………………8
CHAPTER II MATERIAL AND METHODS………………………………….9
2.1 Cloning of Protein-only RNase P (PRORP)……………………………….9
2.2 Cloning of E. coli RNase P………………………………………………..10
2.3 Cloning of N. equitans Histidyl-tRNA synthetase and its tRNA………….11
2.4 Cloning of tRNA for in vivo complementation and in vitro assay….........11
2.5 Construction of yeast RNase P knock-out strains…………………………12
2.6 Complementation assay for testing the replacement of yeast nuc………..15
2.7 Complementation assay for yeast THG1 KO…………………………….15
2.8 Complementation assay for NeHisRS using yeast HisRS KO strain…….16
2.9 Protein purification of PRORP…………………………………………...16
2.10 Western blotting………………………………………………………....17
2.11 In vitro transcription of tRNA……………………………………………17
2.12 In vitro RNase P cleavage assay…………………………………………19
2.13 In vitro aminoacylation assay…………………………………………....19
CHAPTER III RESULTS……………………………………………………....20
3 PRORP alone able to complement yeast nuclear, but not……………….20
3.2 Cicada RNA-only RNase P cannot complement………………………....21
3.3 None of heterologous tRNAHis able to complement………………………21
3.4 Using THG1 knockout strain, we tend to determine…………….……….23
3.5 HisRS alone able to complement yeast HisRS……………………………23
3.6 NeHisRS might be a dual function enzyme which prefers……………….24
3.7 PRORP can process pre-tRNAHis in vitro………………………………..25
CHAPTER IV DISCUSSIONS…………………………………………….…..27
4.1 PRORP able to replace yeast nuclear, but not mitochondrial……………27
4.2 Our study suggests that yeast mitochondrial RPM2…………...………...29
4.3 Cicada RNA-only might not the only subunit required for……………...31
4.4 None of tRNAHis plus PRORP complementation are able to……………32
4.5 NeHisRS was not able to rescue the loss of HisRS KO strain, but……...33
REFERENCES……………………………………………………………........35
APPENDIX……………………………………………………………………..40
參考文獻 Abascal-Palacios, G., E.P. Ramsay, F. Beuron, E. Morris, A. Vannini. 2018. Structural basis of RNA polymerase III transcription initiation. Nature. 554: 301-306
Burkard, U., I. Willis, D. Soll. 1988. Processing of histidine transfer RNA precursor. J. Biol. Chem. 263: 2447-2451
Boisvert, M., V. Bouchard-Levesque, S. Fernandes, P. Tijseen. 2014. Classic nuclear localization signals and a novel nuclear localization motif are required for nuclear transport of porcine parvovirus capsid proteins. J. of. Virol. 88: 11748-11759
Bonnard, G., A. Gobert, M. Arrive, F. Pinker, T. Salinas-Giege, P. Giege. 2016. Transfer RNA maturation in Chlamydomonas mitochondria, chloroplast and the nucleus by a single RNase P protein. The Plant Journal. (87): 270-280
Chang, CP., G Lin, S.J Chen, W.C. Chiu, W.H. Chen, C.C. Wang. 2008. Promoting the formation of an active synthetase/tRNA complex by a non-specific tRNA-binding domain. J. Biol. Chem. (283): 30699-30706
Chamberlain, J.R., Y. Lee, W.S. Lane, D.R. Engelke. Purification and characterization of the nuclear RNase P holoenzyme complex reveals extensive subunit overlap with RNase MRP. Genes & Dev. 12: 1678-1690
Chiu, W., C.P. Chang., C.C. Wang. 2009. Evolutionary basis of converting a bacterial tRNA synthetase into a yeast cytoplasmic or mitochondrial enzyme. J. Biol. Chem. 284: 23954-23960
Cokol, M., R. Nair, B. Rost. 2000. Finding nuclear localization signals. EMBO rep. 1: 411-415
Daoud, R., L. Forget, B.F. Lang. 2012. Yeast mitochondrial RNase P, RNase Z and the RNA degradosome are part of a stable supercomplex. Nuc. Ac. Res. 40: 1728-1736
Gietz, R.D., R. H. Schiestl. 2007. Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols (2): 35-37
Guedes-Monteiro, R.F., L.V.R. Franco, B.S. Moda, A. Tzagoloff, M.H. Barros. 2019. 5’ processing of Saccharomyces cerevisiae mitochondrial tRNAs requires expression of multiple genes. BBA. Mol. Cell. Res. (1866): 806-818
Gobert, A., B. Gutmann, A. Taschner, M. Gosringer, J. Holzmann, R.K. Hartmann, W. Rossmanith, P. Giege. 2010. A single Arabidopsis organellar protein has RNase P activity. Nat. Struc. Mol. Biol. (17): 740-746
Gobert, A., Y. Quan, M. Arrive, F. Waltz, N.D. Silva, L. Jomat, M. Cohen, I. Jupin, P. Giege. 2021. Toward plant resistance to viruses using protein-only RNase P. Nat. Comms. 12:1007: 1-6
Goldfarb, K.C., S. Borah, T.R. Cech. 2012. RNase P branches out from RNP to protein: organelle-triggered diversification? Genes&Dev (26): 1005-1009
Good, P. D., D. R. Engelke. 1994. Yeast expression vectors using RNA polymerase III promoters. Gene (151): 209-214
Gopalan, V., N. Jarrous, A. S. Krasilnikov. 2017. Chance and necessity in the evolution of RNase P. RNA. 24:1-5
Grote, A., K. Hiller, M. Scheer, R. Munch, B. Nortemann, D.C. Hempel, D. Jahn. 2005. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nuc. Ac. Res. 33: 526-531
Harris, M.E. 2015. Theme and variation in tRNA 5’ end processing enzymes: comparative analysis of protein versus ribonucleoprotein RNase P. J. Mol. Biol. 428: 5-9
Hartmann, R.K., M. Gosringer, B. Spath, S. Fischer, A. Marchfelder. 2009. The making of tRNAs and more – RNase P and tRNase Z in Progress in Molecular Biology and Translational Science. Elsevier. 85: 319-335
Heinemann, I.U., A. Nakamura, P. O’Donoghue, D. Eiler, D. Soll. 2011. tRNAHis-guanylyltransferase establishes tRNAHis identity. Nuc. Ac. Res. 40:333-344.
Holzmann, J., P. Frank, E. Loffler, K. L. Bennet, C. Gerner, W. Rossmanith. 2008. RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell. 135: 462-474
Howard, M. J., B.P. Klemm, C.A. Fierke. 2016. Mechanistic studies reveal similar catalytic strategies for phosphodiester bond hydrolysis by protein-only and RNA-dependent Ribonuclease P. J. Biol. Chem. 290: 13454-13464
Ibba, M., D. Soll. 1999. Quality control mechanism during translation. Science. 286: 1893-1897
Ibba, M., D. Soll. 2000. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69:617-650
Khanova, E., O. Esakova, A. Perederina, I. Berezin, A.S. Krasilnikov. 2012. Structural organizations of yeast RNase P and RNase MRP holoenzymes as revealed by UV-crosslinking studies of RNA-protein interactions. RNA. 18: 720-728.
Kolesnikova, O., H. Kazakova, C. Comte, S. Steinberg, P. Kamenski, R.P. Martin, I. Tarassov, N. Entelis. 2010. Selection of RNA aptamers imported into yeast and human mitochondria. RNA. 16: 926-941
Lange, A., R.E. Mills, C.J. Lange, M. Stewart, S.E. Devine, A.H. Corbett. 2007. Classical nuclear localization signals: definition, function, and interaction with importin-⍺. J. Biol. Chem. 282: 5101-5105
Lange, A., L.M. McLane, R.E. Mills, S.E. Devine, A.H. Corbett. 2010. Expanding the definition of the classical bipartite nuclear localization signal. Traffic. 11:311-323
Lechner, M., W. Rossmanith, R.K. Hartmann, C. Tholken, B. Gutmann, P. Giege, A. Gobert. 2015. Distribution of ribonucleoprotein and protein-only RNase P in eukarya. Mol. Biol. Evol. 32: 3186-3193
Lee, J.Y., C.E. Rohlman, L.A. Molony, D.R. Engelke. 1991. Characterization of RPR1, an essential gene encoding the RNA component of Saccharomyces cerevisiae nuclear RNase P. Mol. Cell. Biol. (11): 721-730
Lee, J.Y., C. F. Evans, D.R. Engelke. 1991. Expression of RNase P RNA in Saccharomyces cerevisiae is controlled by an unusual RNA polymerase III promoter. PNAS. (88): 6986-6990
Lee, Y., Y.T. Lo, C.P. Chang, C.S. Yeh, T.H. Chang, Y.W. Chen, Y.K. Tseng, C.C. Wang. 2019. Naturally occurring dual recognition of tRNAHis substrates with and without a universal identity element. RNA Biol. 16: 1275-1285
Leuven, J.T.V., M. Mao, D.D. Xing, G.M. Bennett, J.P. McCutcheon. 2019. Cicada endosymbionts have tRNAs that are correctly processed despite having genomes that do not encode all of the tRNA processing machinery. mBio. 10: 1-18
Lowe, T.M., P.P. Chan. 2016. tRNAscan-SE On-line: search and contextual analysis of transfer RNA genes. Nuc. Ac. Res. 44:54-57
Lu, J., T. Wu, B. Zhang, S. Liu, W. Song, J. Qiao, H. Ruan. 2021. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun Signal. 19: 1-10
Nakai, K., P. Horton. 1999. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Cell Press. 24:34-35
Nickel, A.I., N.B. Waber, M. Gosringer, M. Lechner, U. Linne, U. Toth, W. Rossmanith, R.K. Hartmann. 2017. Minimal and RNA-free RNase P in Aquifex aeolicus. PNAS. 114: 11121-11126
Pagan-Ramos, E., A.J. Tranguch, D.W. Kindelberger, D.R. Engelke. 1994. Replacement of the Saccharomyces cerevisiae RPR1 gene with heterologous RNase P RNA genes. Nuc. Ac. Res. 22: 200-207
Phizicky, E.M., A.K. Hopper. 2010. tRNA biology charges to the front. Genes & Dev. 24: 1832-1860
Pinker, F. 2015. Structural characterization of proteinaceous RNase P from Arabidopsis thaliana. Biologie végétale. Université de Strasbourg, 2015. Français. NTT: 2014STRAJ093.
Preston, M.A., E.M. Phizicky. 2010. The requirement for the highly conserved G-1 residue of Saccharomyces cerevisiae tRNAHis can be circumvented by overexpression of tRNAHis and its synthetase. RNA. 16:1068-1077
Randau, L., M. Pearson, D. Soll. 2005. The complete set of tRNA species in Nanoarchaeum equitans. FEBS Lett. 579: 2945-2947
Randau, L., I. Schroder, D. Soll. 2008. Life without RNase P. Nature Lett. 453: 120-124
Rivera-Leon, R., C. J. Green, B. S.Vold. 1995. High-level expression of soluble recombinant RNase P protein from Escherichia coli. J. of. Bacteriol. (177):2564-2566
Robertson, H.D., S. Altman, J. D. Smith. 1972. Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid precursor. J. of Biol. Chem. 247: 5243-5251
Rosen, A.E., B.S. Brooks, E. Guth, C.S. Francklyn, K. Musier-Forsyth. 2006. Evolutionary conservation of a functionally important backbone phosphate group critical for aminoacylation of histidine tRNAs. RNA. 12: 1315-1322
Rossmanith, W. 2012. Of P and Z: mitochondrial tRNA processing enzymes. Biochimica et Biophysica Acta. 1819: 1017-1026.
Schonauer, M.S., A.J. Kastaniotis, J.K. Hiltunen, C. L. Dieckman. 2008. Intersection of RNA processing and the type II fatty acid synthesis pathway in yeast mitochondria. Mol. Cell. Biol. 28: 6646-6657
Stribinskis, V., G. Gao, P. Sulo, S.R. Ellis, N.C. Martin. 2001. Rpm2p: separate domains promote tRNA and Rpm1r maturation in Saccharomyces cerevisiae mitochondria. Nuc. Ac. Res. 29: 3631-3637
Stribinskis, V., H.C. Heyman, S.R. Ellis, M.C. Steffen, N.C. Martin. 2005. Rpm2p, a component of yeast mitochondrial RNase P, acts as a transcriptional activator in the nucleus. Mol. Cell. Biol. 25: 6546-6558
Sulo, P., K.R. Groom, C. Wise, M. Steffen, N. Martin. 1995. Successful transformation of yeast mitochondria with RPM1: an approach for in vivo studies of mitochondrial RNase P RNA structure, function and biosynthesis. Nuc. Ac. Res. 23: 856-860
Taschner, A., C. Weber, A. Buzet, R. K. Hartmann, A. Hartig, W. Rossmanith. 2012. Nuclear RNase P of Trypanosoma brucei: A single protein in place of the multicomponent RNA-protein complex. Cell (2): 19-25
Teramoto, T., K.J. Kaitany, Y. Kakuta, M. Kimura, C.A. Fierke, T.M.T. Hall. 2020. Pentatricopeptide repeats of protein-only RNase P use a distinct mode to recognize conserved bases and structural elements of pre-tRNA. Nuc. Ac. Res. 1-12
Vinogradova, E., T. Salinas, V. Cognat, C. Remacle, L. Marechal-Drouard. 2009. Steady-state levels of imported tRNAs in Chlamydomonas mitochondria are correlated with both cytosolic and mitochondrial codon usages. Nuc. Ac. Res. 37: 1521-1528
Walker, S.C., R. Engelke. 2008. A protein-only RNase P in human mitochondria. Cell. 135: 412-414
指導教授 王健家(Chien-Chia wang) 審核日期 2021-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明