博碩士論文 107826002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.144.140.151
姓名 林書夷(Shu-Yi Lin)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 微型核糖核酸成為放射線治療的預後生物標記之研究
(The study of microRNA expressions as the prognostic biomarker for radiotherapy)
相關論文
★ 探討牛樟芝CCM111對細胞訊息傳遞之影響★ Tyloxapol 在大腸癌細胞中的特異性及作用機制之研究
★ MAPK傳導路徑相關微型RNA在黑色素瘤細胞中功能之研究★ 利用MAPK訊息傳導路徑相關的miRNAs來治療BRAF抑制劑的抗藥性在黑色素瘤細胞中之研究
★ 探討miR-567在黑色素細胞瘤中的調控機制★ 探索微型核糖核酸與慢性腎臟病及血液透析病人泌尿道上皮癌生物標記的相關性
★ 以miRNA為基礎開發偵測放射線治療抗性及預後的生物標記★ 偵測微型核糖核酸 miR-524-5p表現量利用原位雜交染色法來作為輔助診斷惡性黑色素瘤的生物標記之研究
★ 研究牛樟芝萃取物 CCM111 的作用機制★ 探討黑色素腫瘤中p53調控miR-524-5p及miR-596表現之機制
★ 泌尿道上皮癌相關的miRNAs在膀胱癌之研究★ 探討BRAF抑制劑透過細胞間訊息誘導腫瘤形成之研究
★ 發展以血中微型 RNA 作為冠心症(CAD)的非侵入性疾病指標★ microRNAs作為放射治療預後之生物標誌物與miR-148a-3p於頭頸癌放射敏感度之研究
★ 研究miR-524-5p和miR-567治療在黑色素瘤與BRAF抑製劑的抗藥性黑色素瘤★ 包覆性腹膜硬化症相關miRNAs在腹膜纖維化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-19以後開放)
摘要(中) 癌症治療方法分為手術、放射線治療和化學治療,接受放射線治療的患者約佔
50%;台灣癌症登記報告中指出主要使用放射線治療的癌症為頭頸癌和大腸直腸癌。放射線治療雖然是有效的治療,但部分患者對此治療的反應效果不佳使癌症易復發。
微型核糖核酸(miRNA)藉由調控基因而影響癌症的生成機制。最近研究顯示miRNA 會參與DNA 損傷反應,此反應被報導與腫瘤對於放射線反應具有相關性;此外miRNA 被發現會存在於人的體液中且可作為預後生物標記,因而希望開發一個有效且快速便利的生物標記。此實驗使用先前研究已篩選出的候選miRNA,增加病人數並使用簡易的萃取RNA 方法以開發放射線治療的預後生物標記並研究候選miRNA 是否會影響頭頸癌細胞的放射線敏感性。
此研究收集經放射線治療前的頭頸癌和大腸直腸癌患者的血液並在治療完後追蹤六個月和一年的預後反應。即時定量系統偵測候選miRNA 表現量並由訓練集挑選出潛在標記;候選miRNA 表現量和臨床資料做多重邏輯斯回歸得到生物標記。六個月預後標記AUC為0.9083 (n=52);一年預後標記AUC為0.8235 (n=49)。藉由細胞集落形成實驗證實miR-130a-3p 會增加頭頸癌細胞對放射線敏感性。
希望此研究在未來可以預測病人的放射線預後反應,提升病人預後效果;並深入了解miR-130a-3p 會如何調控放射線敏感性相關的機制。
摘要(英) Cancer treatments are commonly categorized into surgery, radiotherapy and chemotherapy. There are about 50% of cancer patients receiving radiotherapy. The Taiwan cancer registration reported that the majority of head and neck cancer and colorectal cancer patients were treated with radiotherapy. Radiotherapy is effective but a part of patients occurs radioresistance due to poor prognosis.
microRNA (miRNA) is a non-coding RNA containing about 21-24 nucleotides, which affects cancer development by regulating post-transcriptional gene expression. Recent studies
showed that miRNAs are involved in DNA damage responses (DDR), which has been reported to relate to tumor cell radiosensitivity or radioresistance. Furthermore, miRNA is
found in human body fluids and can play as a prognosis biomarker. We hope to develop an biomarker with convenience and rapid, and this prognosis biomarker of radiotherapy can be applied in the clinic. Therefore, this study focused on several candidate miRNAs that have been found in previous study but more plasma samples from head and neck cancer and
colorectal cancer patients were collected in this study compared to previous study. In addition, a novel simple RNA extraction protocol was applied in this study. We devoted to develop candidate miRNA expressions as the prognostic biomarker for radiotherapy and to study whether these candidate miRNAs can affect the radiation sensitivity of head and neck cancer cells.
In this study, plasma samples were collected from patients of head and neck cancer and colorectal cancer before radiation treatment. These patients were tracked clinical responses after six months or one year of radiotherapy. These candidate miRNA expression levels were detected by real-time polymerase chain reaction (qRT-PCR). The miRNA combination ratios and clinical responses were developed to the classifier as the prognostic biomarker for radiotherapy by multiple logistic regression analysis. The area under the curve (AUC) of the classifier for the prediction after six-month of radiation was 0.9083 (n = 52). The AUC of the
classifier for the prediction after one-year of radiation was 0.8235 (n = 49). In addition, we confirmed that miR-130a-3p increased radiosensitivity in head and neck cancer cells by colony formation assay.
We hope the results of this research could be applied to predict the response of patients to radiotherapy and improve the survival of patients. We will devote to knowing how miR-
130a-3p regulates the DNA damage responses in the future.
關鍵字(中) ★ 放射線治療
★ 生物標記
關鍵字(英) ★ Radiotherapy
★ Biomarker
論文目次 中文摘要 i
Abstract ii
誌謝 iv
圖目錄 ix
表目錄 x
符號說明 xi
一、介紹(Introduction) 1
1. 頭頸癌(Head and neck cancer) 1
1-1 頭頸癌的分類與發生 1
1-2 頭頸癌的治療及預後 1
2. 大腸直腸癌(Colorectal cancer) 2
2-1 大腸直腸癌的分類與發生 2
2-2 大腸直腸癌的治療及預後 3
3. 放射線治療(Radiotherapy) 3
4. 微型核糖核酸(microRNA) 4
4-1 微型核糖核酸的生成 4
4-2 微型核糖核酸在癌症中所扮演的角色 5
4-3 微型核糖核酸作為生物標記 5
5. 研究目的 6
二、實驗材料與方法(Materials and Methods) 7
1. 實驗材料(Materials) 7
1-1 癌症病患的血液檢體 (Plasma samples) 7
1-2 萃取核酸試劑(RNA extraction reagent) 7
1-3 即時定量聚合酶連鎖反應試劑(RT-qPCR reagent) 8
1-4 分析軟體(Analysis software) 8
1-5 細胞株(Cell line) 8
1-6 結晶紫溶液(Crystal violet) 8
1-7 免疫螢光染色試劑(Immunofluorescence reagent) 9
2. 實驗方法(Methods) 10
2-1 實驗步驟(Experimental procedures) 10
2-2 分離檢體中的血漿(Separate plasma samples from blood samples) 10
2-3 樣品萃取(RNA extraction) 10
2-4 即時定量聚合酶連鎖反應(RT-qPCR) 11
2-5 資料分析(Data analysis) 12
2-6 圖表製作(Chart) 12
2-7 細胞群落形成測定實驗(Colony formation assay) 13
2-8 免疫螢光染色(Immunofluorescence) 14
三、實驗結果(Results) 15
1. 患者的背景資料 15
1-1 六個月預後分析 15
1-2 一年預後分析 15
2. 挑選候選miRNA和原始數據的評估 16
3. 訓練集中候選miRNA表現量與放射線預後反應良好和預後反應不良的相關性 16
3-1 六個月預後分析 16
3-2 一年預後分析 17
4. 訓練集中候選miRNA表現量的ROC曲線分析 17
4-1 六個月預後分析 17
4-2 一年預後分析 17
5. 訓練集中候選miRNA表現量比值的ROC曲線分析 18
5-1 六個月預後分析 18
5-2 一年預後分析 18
6. 訓練集中候選miRNA表現量的比值與放射線預後反應良好和預後反應不良的相關性 19
6-1 六個月預後分析 19
6-2 一年預後分析 19
7. 訓練集中候選miRNA表現量比值和腫瘤期別結合的分類器的ROC曲線分析 20
7-1 六個月預後分析 20
7-2 一年預後分析 20
8. miR-130a-3p會減少頭頸癌細胞的放射線抗性 21
9. miR-130a-3p不會影響?H2AX的表現量 22
四、結論 23
五、討論 24
1. 候選miRNA在頭頸癌與大腸直腸癌的樣本中當作放射線治療之生物標記的潛力 24
2. miR-130a-3p增加頭頸癌細胞的放射線敏感度 26
六、參考資料與文獻 27
參考文獻 1. Argiris, A., et al., Head and neck cancer. The Lancet, 2008. 371(9625): p. 1695-1709.
2. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
3. Vineis, P., et al., Tobacco and cancer: recent epidemiological evidence. J Natl Cancer Inst, 2004. 96(2): p. 99-106.
4. William J. Blot, J.K.M., Deborah M. Winn, Donald F. Austin, Raymond S. Greenberg, Susan and L.B. Preston-Martin, Janet B. Schoenberg, Annette Stemhagen, and Joseph F. Fraumeni, Jr., Smoking and Drinking in Relation to Oral and Pharyngeal Cancer. Cancer research, 1988.
5. Chen, Y.J., et al., Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis. Cancer Sci, 2008. 99(8): p. 1507-14.
6. Silvia FRANCESCHI, F.L., Carlo LA VECCHIA, Ettore CONTI, Luigino DAL MASO, Luigi BARZAN and Renato TALAMINI, Comparison of the effect of smoking and alcohol drinking between oral and pharyngeal cancer. International Journal of Cancer, 1999. 83: p. 1-4.
7. Aimee R. Kreimer, G.M.C., Peter Boyle, and Silvia Franceschi, Human Papillomavirus Types in Head and Neck Squamous Cell Carcinomas Worldwide A Systematic Review. American Association for Cancer Research, 2005.
8. Marur, S., et al., HPV-associated head and neck cancer: a virus-related cancer epidemic. The Lancet Oncology, 2010. 11(8): p. 781-789.
9. Marcel P. Copper, M.A.J., DDS; Jos J. P. Nauta, MSc; Boudewijn J. M. Braakhuis, PhD; and M.I.v.d.W. Nico de Vries, DDS; Gordon B. Snow, MD, Role of Genetic Factors in the Etiology of Squamous Cell Carcinoma of the Head and Neck. Arch Otolaryngol Head Neck Surg., 1995: p. 157-160.
10. Goldgar, D.E., et al., Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst, 1994. 86(21): p. 1600-8.
11. Foulkes WD, B.J., Sieh W, Black MJ, Shenouda G, Narod SA., Familial risks of squamous cellcarcinoma ofthehead and neck retrospectivecase-controlstudy. BMJ, 1996: p. 716-721.
12. Copper, M.P., et al., Role of genetic factors in the etiology of squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg, 1995. 121(2): p. 157-60.
13. Thoms, J. and R.G. Bristow, DNA repair targeting and radiotherapy: a focus on the therapeutic ratio. Semin Radiat Oncol, 2010. 20(4): p. 217-22.
14. Eriksson, D. and T. Stigbrand, Radiation-induced cell death mechanisms. Tumour Biol, 2010. 31(4): p. 363-72.
15. Renschler, M.F., The emerging role of reactive oxygen species in cancer therapy. Eur J Cancer, 2004. 40(13): p. 1934-40.
16. Jeong, H., et al., Radiation-induced immune responses: mechanisms and therapeutic perspectives. Blood Res, 2016. 51(3): p. 157-163.
17. Marur, S. and A.A. Forastiere, Head and neck cancer: changing epidemiology, diagnosis, and treatment. Mayo Clin Proc, 2008. 83(4): p. 489-501.
18. Department of Veterans Affairs Laryngeal Cancer Study, G., et al., Induction chemotherapy plus radiation compared with surgery plus radiation in patients with advanced laryngeal cancer. N Engl J Med, 1991. 324(24): p. 1685-90.
19. Bonner, J.A., et al., Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med, 2006. 354(6): p. 567-78.
20. Bonner, J.A., et al., Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol, 2010. 11(1): p. 21-8.
21. Higgins, G.S., et al., Drug radiotherapy combinations: review of previous failures and reasons for future optimism. Cancer Treat Rev, 2015. 41(2): p. 105-13.
22. Klein, J., J. Livergant, and J. Ringash, Health related quality of life in head and neck cancer treated with radiation therapy with or without chemotherapy: a systematic review. Oral Oncol, 2014. 50(4): p. 254-62.
23. Skvortsov, S., et al., Radioresistant head and neck squamous cell carcinoma cells: intracellular signaling, putative biomarkers for tumor recurrences and possible therapeutic targets. Radiother Oncol, 2011. 101(1): p. 177-82.
24. Siegel, R.L., et al., Colorectal cancer statistics, 2017. CA Cancer J Clin, 2017. 67(3): p. 177-193.
25. Jochem, C. and M. Leitzmann, Obesity and Colorectal Cancer. Recent Results Cancer Res, 2016. 208: p. 17-41.
26. Lynch, H.T. and A. de la Chapelle, Hereditary colorectal cancer. N Engl J Med, 2003. 348(10): p. 919-32.
27. Zou, Z., et al., Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis, 2017. 22(11): p. 1321-1335.
28. Tsuiko, O., et al., A speculative outlook on embryonic aneuploidy: Can molecular pathways be involved? Dev Biol, 2019. 447(1): p. 3-13.
29. Charitou, P. and B.M. Burgering, Forkhead box(O) in control of reactive oxygen species and genomic stability to ensure healthy lifespan. Antioxid Redox Signal, 2013. 19(12): p. 1400-19.
30. Assaily, W., et al., ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol Cell, 2011. 44(3): p. 491-501.
31. Zhao, L., et al., Regulatory mechanisms and clinical perspectives of miRNA in tumor radiosensitivity. Carcinogenesis, 2012. 33(11): p. 2220-7.
32. Ambros, V., A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell, 1989. 57: p. 49-57.
33. Rosalind C. Lee, R.L.F., Victor Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75: p. 843-854.
34. Zhao, T., et al., A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev, 2007. 21(10): p. 1190-203.
35. Molnar, A., et al., miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature, 2007. 447(7148): p. 1126-9.
36. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97.
37. Lee, Y., et al., MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 2004. 23(20): p. 4051-60.
38. Lee, Y., et al., The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003. 425(6956): p. 415-9.
39. Yi, R., et al., Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 2003. 17(24): p. 3011-6.
40. Wang, Q. and J. Yu, MiR-129-5p suppresses gastric cancer cell invasion and proliferation by inhibiting COL1A1. Biochem Cell Biol, 2018. 96(1): p. 19-25.
41. Jin, K., et al., MiR-520b restrains cell growth by targeting HDAC4 in lung cancer. Thorac Cancer, 2018. 9(10): p. 1249-1254.
42. Liu, S.M., et al., miR-524-5p suppresses the growth of oncogenic BRAF melanoma by targeting BRAF and ERK2. Oncotarget, 2014. 5(19): p. 9444-59.
43. Zhang, P., et al., miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat Commun, 2014. 5: p. 5671.
44. Zheng, R., et al., miRNA-200c enhances radiosensitivity of esophageal cancer by cell cycle arrest and targeting P21. Biomed Pharmacother, 2017. 90: p. 517-523.
45. Qu, J.Q., et al., MiRNA-203 Reduces Nasopharyngeal Carcinoma Radioresistance by Targeting IL8/AKT Signaling. Mol Cancer Ther, 2015. 14(11): p. 2653-64.
46. Zhai, G., et al., miRNA-148b regulates radioresistance in non-small lung cancer cells via regulation of MutL homologue 1. Biosci Rep, 2016. 36(3).
47. Weber, J.A., et al., The microRNA spectrum in 12 body fluids. Clin Chem, 2010. 56(11): p. 1733-41.
48. Kosaka, N., H. Iguchi, and T. Ochiya, Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci, 2010. 101(10): p. 2087-92.
49. Zen, K. and C.Y. Zhang, Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev, 2012. 32(2): p. 326-48.
50. Chen, X., et al., Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 2008. 18(10): p. 997-1006.
51. Ng, E.K., et al., Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut, 2009. 58(10): p. 1375-81.
52. Park, N.J., et al., Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res, 2009. 15(17): p. 5473-7.
53. Li, A.L., et al., microRNA expression pattern as an ancillary prognostic signature for radiotherapy. J Transl Med, 2018. 16(1): p. 341.
54. Lin, Y. and Z. Lai, Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Science, 2010. 178(4): p. 359-365.
55. Jia, J., et al., LncRNA H19 interacted with miR-130a-3p and miR-17-5p to modify radio-resistance and chemo-sensitivity of cardiac carcinoma cells. Cancer Med, 2019. 8(4): p. 1604-1618.
56. Ha Thi, H.T., et al., MicroRNA-130a modulates a radiosensitivity of rectal cancer by targeting SOX4. Neoplasia, 2019. 21(9): p. 882-892.
57. Sharma, A., K. Singh, and A. Almasan, Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol Biol, 2012. 920: p. 613-26.
58. Hoey, C., et al., miRNA-106a and prostate cancer radioresistance: a novel role for LITAF in ATM regulation. Mol Oncol, 2018. 12(8): p. 1324-1341.
59. Deng, P. and Y. Wu, Knockdown of miR-106a suppresses migration and invasion and enhances radiosensitivity of hepatocellular carcinoma cells by upregulating FBXW7. Int J Clin Exp Pathol, 2019. 12(4): p. 1184-1193.
60. Hou, W., et al., Inhibition of Beclin-1-Mediated Autophagy by MicroRNA-17-5p Enhanced the Radiosensitivity of Glioma Cells. Oncol Res, 2017. 25(1): p. 43-53.
61. Wu, S.Y., et al., MicroRNA-17-5p post-transcriptionally regulates p21 expression in irradiated betel quid chewing-related oral squamous cell carcinoma cells. Strahlenther Onkol, 2013. 189(8): p. 675-83.
62. Hu, Z., et al., miRNA-17 promotes nasopharyngeal carcinoma radioresistance by targeting PTEN/AKT. Int J Clin Exp Pathol, 2019. 12(1): p. 229-240.
63. Lynam-Lennon, N., et al., MicroRNA-17 is downregulated in esophageal adenocarcinoma cancer stem-like cells and promotes a radioresistant phenotype. Oncotarget, 2017. 8(7): p. 11400-11413.
64. Chen, W., et al., LINC00473/miR-374a-5p regulates esophageal squamous cell carcinoma via targeting SPIN1 to weaken the effect of radiotherapy. J Cell Biochem, 2019. 120(9): p. 14562-14572.
65. Huang, T., et al., MicroRNA-19b-3p regulates nasopharyngeal carcinoma radiosensitivity by targeting TNFAIP3/NF-kappaB axis. J Exp Clin Cancer Res, 2016. 35(1): p. 188.
66. Zhou, Y., et al., Let-7b overexpression leads to increased radiosensitivity of uveal melanoma cells. Melanoma Res, 2015. 25(2): p. 119-26.
67. Chang, L., et al., PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways. Cell Death Dis, 2014. 5: p. e1437.
指導教授 馬念涵(Nian-Han Ma) 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明