博碩士論文 107827001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.15.180.175
姓名 石祐安(Yu-An Shih)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 開發可攜式十二導程心電圖和聲學雙功能系統於居家分析心臟電生理訊號
(Implementation of a Portable Dual-Functional 12-Lead ECG and Acoustic System for Home-based Cardiac Signal Analysis)
相關論文
★ 不同麻醉深度之相位-振幅耦合量測及強度比較★ 設計及製作可攜式非侵入性心搏輸出量監測系統
★ 應用非侵入性方法來探究透析過程中血流動力學變化及心血管疾病之預後★ 開發具深度學習應用於自動追蹤耳膜功能之數位耳鏡於中耳炎輔助系統
★ 反覆編曲結構音樂對人體生理訊號之影響★ 設計具低功耗無線傳輸及結合人工智慧判讀之長時間聽診監測系統
★ 實踐經驗模態分解於高度非穩態生理訊號之訊號特徵擷取★ Exploring Beat-to-Beat Photoplethysmography Features at the Upper and Lower Extremities as Potential Biomarkers for Early Diagnosis of Peripheral Arterial Occlusive Disease: A Comparative study with Ultrasound Doppler and Ankle-Brachial Index
★ 應用稀疏時頻表現式解析生理系統間非線性耦合機轉★ 基於功能性近紅外光腦光譜與腦電圖發展多模態腦活動無線監測系統
★ 脂質奈米顆粒在mRNA疫苗技術應用發展綜述★ 自12導程心電圖擷取P波特徵辨識竇性心律下之 心房顫動高風險病患
★ 探討以非侵入方式的影像心衝擊圖形態特徵來評估左心室射血分數 : 基於數學模型與臨床驗證的初步研究★ 發展可用於肺部疾病患者呼吸音監測之高解析加速度陣列感測器
★ 以光體積變化描記儀作為男性勃起功能及陰莖血液動力學及性功能客觀指標之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 根據世界衛生組織(World Health Organization, WHO)公布心血管疾病是位居全球最大死因之一,由於其症狀驟然發生且不可預期,因此居家醫療器材的輔助可以降低對生命造成的威脅。心電圖(Electrocardiogram, ECG)和心臟超音波(Echocardiography)是目前診斷心臟病理的兩種主要非侵入式方法,心電圖利用心臟電位變化找出心臟傳導異常或缺血區域,雖然心電圖已有許多便攜式的機型產生,但心臟結構異常,如:心室中隔缺損(Ventricular Septal Defect, VSD)或心臟瓣膜閉鎖不全(Valvular Heart Disease)等疾病還是需心臟超音波方可判別,且心臟超音波仰賴專業人員操作難以普及化,而反觀心音圖(Phonocardiogram, PCG)可透過數位記錄心臟收縮時,血流經過或撞擊不同心臟區域的聲音,在結構異常時會產生異常雜音,因此若能搭配訊號分析,有潛力做為心臟結構異常的篩檢工具。本研究提出一款可攜式非侵入性並整合十二導程心電圖及聲學雙系統之設計,藉由兩種系統的整合與居家檢測(Point-of-care, POC)的概念,將更容易且有效提前預防心臟是否衰竭及各項心臟疾病。在未來應用不僅僅只限於大型醫院或加護病房等,也可推展於小型醫療機構、戶外急救單位及普遍家庭,實現即時且普及的生理訊號監測系統。
本系統架構分為兩大部分,第一部分是量測十二導程心電圖電路,由類比數位轉換器(Analog/Digital Convertor, ADC)、微處理器(Microprocessor, MCU)及電源供應端(Power Supply)組成。第二部分為心音類比電路之設計,經類比電路端解析訊號後由微處理器之類比數位轉換器收錄,利用通用非同步收發傳輸器(Universal Asynchronous Receiver/Transmitter, UART)、藍芽(Bluetooth, BT)與外掛安全數位卡模組(Secure Digital Memory Card, SD Card)傳送或儲存到電腦進行分析及計算,搭配Python、Matlab等程式收錄原始訊號進行處理,分別即時顯示並同步分析得到心電圖及心音圖訊號,進行比對及系統設計驗證。
摘要(英) According to the World Health Organization (WHO), cardiovascular diseases are still one of the leading causes of death worldwide. Although, we can reduce this rate with the assistance of portable diagnostic devices. Electrocardiogram (ECG) and Echocardiography are currently the two non-invasive methods of diagnosing cardiac disease. ECG uses heart potential changes to find out the defective part of the atrium and ischemia. Although ECG have been produced by many portable products, but abnormal cardiac structures such as ventricular septal defect (VSD) or valvular heart disease still need Echocardiography to determine. Owing to Echocardiography depends on the operation of professionals. In contrast, Phonocardiogram (PCG) can digitally record the sound of blood flow or hitting different heart regions when the heart contracts. Abnormal noise heart sound will be generated, so if it can be combined with signal analysis, it has the potential to be used as a screening for abnormal heart structure tool. This study proposes a portable non-invasive device that integrates 12-Lead ECG and PCG into one system. Integration of the two systems and point-of-care (POC) conception can provide an easier and effective way of detecting various heart diseases.
This system is divided into two major parts. The measurement of the signal using a 12-Lead Electrocardiogram circuit and the design of an analog circuit of the heart sound. After the signal is analyzed by an analog circuit, it is recorded by an analog-to-digital converter. Universal Asynchronous Receiver/Transmitter (UART), Bluetooth (BT), and Secure Digital Memory Card (SD Card) are used to send or store the recorded signal for further analysis and calculation. The raw data are collected and processed using programming software to real-time display ECG and PCG signals for comparison and system design verification.
關鍵字(中) ★ 非侵入性
★ 即時顯示
★ 十二導程心電圖
★ 心音圖
關鍵字(英) ★ Non-invasive
★ Real-time display
★ 12-Lead Electrocardiogram
★ Phonocardiogram
論文目次 摘要……………………………………………………………………………………………..i
Abstract………………………………………………………………….……………………..ii
誌謝……………………………...……………………………………………………...…….iii
目錄………………………………………………………………………...………….………iv
附圖目錄………………………………………………………………………………...…….vi
附表目錄…………………………………………………………………………………….ix
第一章 緒論…………………………………………………………………………….….1
1.1 前言………………………………………………………………...………1
1.2 研究動機與目的…………………………………………………………...1
1.3 本文架構………………………………………………………………...…2
第二章 研究原理…………………………………………………………………………..3
2.1 心電圖……………………………………………………………………...3
2.1.1 心電圖原理…………………………………………….….….3
2.1.2 心電圖訊號………………………………………………...4
2.1.3 心電圖導程介紹…………………………………………...6
2.1.4 雙極導程的量測方法………………………………………...7
2.1.5 單極導程的量測方法………………………………………...8
2.2 心音圖………………………………………………………………...10
2.2.1 心音圖原理……………………………………………..….10
2.2.2 心音圖訊號………………………………………….….….11
2.2.3 心音圖的量測位置………………………………………….13
第三章 研究方法介紹……………………………………………………………………15
3.1 前端類比電路…………………………………………………………….15
3.1.1 駐極體電容式麥克風……………………………………….15
3.1.2 前端濾波電路……………………………………………….19
3.1.3 直流偏壓準位電路………………………………………….23
3.2 數位控制電路…………………………………………………………….25
3.2.1 心電圖參考系統.....……...………………………………….26
3.2.2 混合訊號微處理器………………………………………….29
3.2.3 類比數位轉換器…………………………………………….31
3.2.4 資料傳輸………………………...………………………….35
3.3 電腦數據分析…………………………………………………………….40
3.3.1 資料編碼與解碼…………………………………………….41
3.3.2 數位濾波處理…………...………………………………….42
3.3.3 快速傅立葉變換…………………………………………….44
3.4 3D列印建模設計……………………………………………………….46
3.4.1 胸導訊號線……………………………………………….46
3.4.2 外殼裝置…...…………………………………………….49
第四章 實驗結果分析……………………………………………………………………52
4.1 前端類比電路驗證……………………………………………………….52
4.2 後端數位電路驗證……………………………………………………….55
4.3 全系統驗證及分析……………………………………………………….59
第五章 結論與未來展望…………………………………………………………………63
5.1 結論………………………………………………………………………...63
5.2 未來展望…………………………………………………………………...64
參考文獻……………………………………………………………………………………...65
參考文獻 [1] Du-Guan Fu, (2015). Cardiac Arrhythmias: Diagnosis, Symptoms, and Treatments. Cell Biochemistry and Biophysics, 73(2):291-296. doi:10.1007/s12013-015-0626-4.
[2] Lei Lu, Min Liu, RongRong Sun, Yi Zheng, Peiying Zhang, (2015). Myocardial Infarction: Symptoms and Treatments. Cell Biochemistry and Biophysics, 72(3):865-867. doi:10.1007/s12013-015-0553-4.
[3] Chad Rogers, Nathania Bush, (2015). Heart Failure: Pathophysiology, Diagnosis, Medical Treatment Guidelines, and Nursing Management. The Nursing clinics of North America, 50(4):787-99. doi: 10.1016/j.cnur.2015.07.012.
[4] John D. Bonagura, D.V.M., M.S., C. Wendy Myer, D.V.M., M.S., and Robert R. Pensinger, D.V.M., M.S., (1982). Angiocardiography, The Veterinary clinics of North America, 12(2):239-58. doi:10.1016/s0195-5616(82)50030-7.
[5] Mohammed A. Chamsi-Pasha, MD, Partho P. Sengupta, MD, DM, William A. Zoghbi, MD, MACC, (2017). Handheld Echocardiography: Current State and Future Perspectives. Circulation Journal, 136(22):2178-2188. doi:10.1161/CIRCULATIONAHA.117.026622
[6] Chien-Chin Hsu, Bor-Shing Lin, Ke-Yi He, Bor-Shyh Lin, (2019). Design of a Wearable 12-Lead Noncontact Electrocardiogram Monitoring System. Sensors(Basel), 19(7):1509. doi: 10.3390/s19071509.
[7] Antal A. Sarkady, Ronald R. Clark, Roberta Williams, (1976). Computer Analysis Techniques for Phonocardiogram Diagnosis. Computers and Biomedical Research, 9(4):349-63. doi:10.1016/0010-4809(76)90056-2.
[8] Anantha P. Chandrakasan, William J. Bowhill, Frank Fox, (2001). Design of High-Performance Microprocessor Circuits. 1st, Wiley-IEEE Press ©2000. ISBN:9780470544365.
[9] Jaakko Malmivuo, Robert Plonsey, (1995). Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. ISBN:9780195058239. doi:10.1093/acprof:oso/9780195058239.001.0001.
[10] Stephen McStay, (2019). Recording a 12-lead Electrocardiogram(ECG). British Journal of Nursing, 28(12):756-760. doi:10.12968/bjon.2019.28.12.756.
[11] Gaetano D. Gargiulo, (2015). True Unipolar ECG Machine for Wilson Central Terminal Measurements. BioMed Research International, 2015:586397. doi:10.1155/2015/586397. Epub 2015 Oct 1.
[12] Philip Langley, Alan Murray, (2017). Heart Sound Classification from Unsegmented Phonocardiograms. Physiological Measurement, 38(8):1658-1670. doi:10.1088/1361-6579/aa724c.
[13] Preeti Ahuja, Patima Sdek, W. Robb MacLellan, (2007). Cardiac Myocyte Cell Cycle Control in Deveopment, Disease, and Regeneration. Physiological Reviews, 87(2):521-44. doi:10.1152/physrev.00032.2006.
[14] Zorana Mrsic, MD, Scott P. Hopkins, MD, Jared L. Antevil, MD, Philip S. Mullenix, MD, (2018). Valvular Heart Disease. Primary Care, 45(1):81-94. doi:10.1016/j.pop. 2017.10.002. Epub 2017 Dec 27.
[15] Young-Sun Cho, So Eun Park, Soo-Kyung Hong, Na-Yeong Jeong, Eun-Young Choi, (2017). The Natural History of Fetal Diagnosed Isolated Ventricular Septal Defect. Prenatal Diagnosis, 37(9):889-893. doi:10.1002/pd.5100. Epub 2017 Jul 25.
[16] Julie Fontecave-Jallon, Karel Fojtik, Bertrand Rivet, (2019). Is There an Optimal Localization of Cardio-microphone Sensors for Phonocardiogram Analysis? Conference of the IEEE Engineering in Medicine and Biology Society, 2019:3249-3252. doi:10.1109/EMBC.2019.8857681.
[17] Yu-Hsin Chen, Hong-Hui Chen, Tung-Chien Chen, Liang-Gee Chen, (2011). Robust Heart Rate Measurement with Phonocardiogram by On-Line Template Extraction and Matching. Conference of the IEEE Engineering in Medicine and Biology Society, 2011:1957-60. doi:10.1109/IEMBS.2011.6090552.
[18] Aparna Lakhe, Isha Sodhi, Jyothi Warrier, Vineet Sinha, (2016). Development of Digital Stethoscope for Telemedicine. Journal of Medical Engineering & Technology, 40(1):20-4. doi: 10.3109/03091902.2015.1116633. Epub 2016 Jan 5.
[19] John L. Semmlow, (2016). Improved Heart Sound Detection and Signal-to-Noise Estimation Using a Low-Mass Sensor. IEEE Transactions on Bio-medical Engineering, 63(3):647-52. doi:10.1109/TBME.2015.2468180.
[20] Hiroshi Kurihara, Tadayoshi Katoh, (1978). Band-pass filter circuit.
[21] Wai-Kai Chen, (1986). Passive and Active Filters: Theory and Implementations. ISBN:978-0-471082352-0.
[22] T. Deliyannis, Yichuang Sun, J.K. Fidler, (2019). Continuous-Time Active Filter Design. ISBN:978-0849325731.
[23] Yumin Zhang, (2014). Differential Amplifiers. Copyright © Morgan & Claypool Publishers.
[24] J. W. Loney, (1982). An ECG/EEG Common Mode Rejection Ratio Analyzer. Journal of Clinical Engineering, 7(4):309-12. doi:10.1097/00004669-198210000-00006.
[25] Michel S.J. Steyaert, Willy M.C. Sansen, Chang Zhong Yuan, (1987). A Micropower Low-Noise Monolithic Instrumentation Amplifier for medical purposes. IEEE Journal of Solid-State Circuits, Volume: 22, Issue: 6, Page(s): 1163 – 1168. doi:10.1109/JSSC.1987.1052869
[26] Leilei Du, Yan Yan, Wenxian Wu, Qiujun Mei, Yu Luo, Yang Li, Lei Wang, (2013). Towards a Smart Holter System with High Performance Analogue Front-End and Enhanced Digital Processing. Conference of the IEEE Engineering in Medicine and Biology Society, 2013:1210-3. doi:10.1109/EMBC.2013.6609724.
[27] A.J. Cook, G.D. Gargiulo, T. Lehmann, T.J. Hamilton, (2015). Open platform, eight-channel, portable bio-potential and activity data logger for wearable medical device development. Electronics Letters, Volume: 51, Issue: 21, Page(s): 1641 – 1643. doi:10.1049/el.2015.2764
[28] Chuan-Xiang Que, Quan Liu, Qimg-Song Ai, Kun Chen, (2016). Design and realization of 12-lead electrocardiosignal acquisition and processing system. International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). doi:10.1109/ICCWAMTIP.2016.8079889
[29] Cheng Sun, Jingsheng Liao, Gang Wang, Baopu Li, Max Q. -H. Meng, (2013). A portable 12-lead ECG acquisition system. IEEE International Conference on Information and Automation(ICIA). doi:10.1109/ICInfA.2013.6720325
[30] Ciprian Cristea, Alexandru Pasarica, Gladiola Andruseac, Bogdan Dionisie, Cristian Rotariu, (2015). A wireless ECG acquisition device for remote monitoring of heart rate and arrhythmia detection. E-Health and Bioengineering Conference(EHB). doi:10.1109/EHB.2015.7391543
[31] Frederick O. R. MiesterfeldJohn M. McCambridgeRonald E. FassnachtJerry M. Nasiadka, (1986). Serial data bus for serial communication interface (SCI), serial peripheral interface (SPI) and buffered SPI modes of operation.
[32] Martin S. Michael, (1988). Universal asynchronous receiver/transmitter. National Semiconductor Corp.
[33] Gordon Colbach, (2019). Bluetooth Tutorial: Design, Protocol and Specifications for BLE – Bluetooth Low Energy 4.0 and Bluetooth 5. ISBN:978-1073331680
[34] Pankaj Kumar, (2003). J2EE Security for Servlets, EJBs, and Wed Services. ISBN:978-0131402645
[35] Crane, John D. M. Osburn, (1988). Filters & Power Conditioning: 004 (Electromagnetic Interference and Compatibility Ser. : Vol 4). ISBN:978-0944916049
[36] E. Brigham, (1988). Fast Fourier Transform and Its Applications. ISBN:978-0133075052
[37] Duraisamy Sundararajan, (2001). The Discrete Fourier Transform: Theory, Algorithms and Applications. ISBN:978-9810245214
[38] Jesse Russell, Ronald Cohn, (2012). Fused Deposition Modeling. ISBN:978-5510780499
[39] Patri K. Venuvinod, Weiyin Ma, (2004). Selective Laser Sintering (SLS). ISBN:978-1475763614
[40] Christina Schmidleithner, Deepak M. Kalaskar, (2018). Stereolithography. doi:10.5772/intechopen.78147
[41] R. Huamani R., Jorge Rendulich Talavera, Enrique A. Soto Mendoza, Nelly M. Dávila, Elvis Supo, (2017). Implementation of a real-time 60 Hz interference cancellation algorithm for ECG signals based on ARM cortex M4 and ADS1298. IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON). doi:10.1109/INTERCON.2017.8079725
指導教授 林澂(Chen Lin) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明