博碩士論文 107827007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.239.109.55
姓名 陳臆鈞(Yi-Chun Chen)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 菲涅耳數位全像顯微系統於全血細胞分析之研製
(Research and Development of Fresnel Digital Holographic Microscope System for Complete Blood Cell Analysis)
相關論文
★ 具生物沾粘性免疫奈米磁珠之電化學平台於急性冠心病標誌物檢測★ 遮罩區域卷積類神經網路於醫學影像物件偵測分析應用
★ 功能性抗生物沾黏單層膜於冠狀動脈心血管疾病標誌物之檢測應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 光學顯微鏡在工程物理、生物醫學等領域中扮演著相當重要的角色,藉由它觀察肉眼無法看到的表面材料、細胞或是微生物,但目前光學成像平台的複雜性和昂貴的成本使其在實際應用上有所限制。
本研究中使用菲涅耳數位全像術(Fresnel Digital Holography, FDH)原理研發建立了新式數位全像顯微系統,利用純量繞射理論簡化了光學成像設備,不再需要龐大且複雜的光學元件,只需由非同調光、針孔和影像傳感器組成,沒有了透鏡限制視場(Field of view, FOV)大小,可同時具備廣視場(30mm2)並達到接近繞射極限之高空間解析度,透過控制光源的空間相干性在傳感器上記錄繞射影像,在不需光學透鏡下藉由傅立葉轉換重建出與20倍顯微鏡相同解析度之影像,經由自主研發之演算程式,僅需5秒內即可取得最終影像重建結果。
在本篇論文中以全血細胞分析進行實際應用,在搭配自主設計的微流道採血晶片後,紅血球與白血細胞計數的準確率分別可達到93.5%與91%。本研發之系統在生物學和醫學診斷創新性的突破,有機會增加疾病的提前預防和早期診斷的可能性,尤其在醫療資源有限的環境。實驗結果證實本系統只需微量血液即可進行快速、大面積的血液細胞表徵分析與全血計數功能,可預期為現有的全血分析工具提供便攜且具有經濟效益的替代方案。
摘要(英) The optical microscope, which enabled people to observe invisible objectives more details such as surface materials, cells, or microorganisms played an important role in various fields of engineering, physical science, medicine, and biology. However, the application was limited by the complexity and expensive cost of the current optical imaging platform.
The Fresnel Digital Holography (FDH) proposed in this study utilized scalar diffraction theory to simplify optical imaging equipment. It no longer needed large and complicated optical components were composed of non-coherent light, pinhole, and image sensor. Without the lens to limit the field of view (FOV), the high spatial resolution close to the diffraction limit could be achieved on a large FOV (30mm2). By controlling the spatial coherence of the light source, the diffraction pattern was recorded on the sensor, and the image with the same resolution as the 20x microscope was reconstructed by the inverse Fourier transform without any optical lens within 5 seconds. The accuracy of red blood cell count is 93.5%, and that of white blood cell is about 91%. The system will not only bring the innovative breakthroughs in biology and medical diagnosis, but also enhance the possibility of early prevention and early diagnosis, especially in areas where the medical resources are scarce.
In this study, the complete blood cell analysis was used for practical application. After matching with the micro-channel blood sampling chip by self-designed, the empirical evidence obtained from in the experimental results proved that the system could perform rapid, high-throughput blood cell characterization analysis and the function of complete blood count with the trace blood sample. The system provided a portable and economical alternative of the contemporary whole blood analysis tools.
關鍵字(中) ★ 光學成像
★ 菲涅耳
★ 全像術
★ 傅立葉轉換
★ 全血細胞
關鍵字(英) ★ optical imaging
★ Fresnel
★ holography
★ Fourier transform
★ complete blood cell
論文目次 中文摘要 i
ABSTRACT ii
致謝 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 3
1-3論文架構 3
第二章 文獻探討 5
2-1純量繞射理論 5
2-1-1單色光場的複振幅 5
2-1-2球面波 6
2-1-3克希荷夫積分定理(Kirchhoff integral theorem) 7
2-1-4菲涅耳-克希荷夫繞射公式 9
2-1-5菲涅耳繞射 12
2-2全像術 14
2-2-1全像術原理 14
2-2-2數位全像術 16
2-3全血細胞計數(Complete Blood Count, CBC) 17
第三章 研究方法 21
3-1樣品製備 21
3-1-1全血樣本 21
3-1-2血液晶片設計 23
3-2系統架設 25
3-3重建計數演算法 29
第四章 實驗結果與討論 34
4-1實驗驗證 34
4-2實際全血測量 35
4-3自動計數功能 37
第五章 結論 40
參考文獻 Reference 41
參考文獻 1. Zhu, H., et al., ′′Optical imaging techniques for point-of-care diagnostics′′. Lab Chip,Vol. 13, 2013, p. 51-67.
2. Im, H., et al., ′′Digital diffraction analysis enables low-cost molecular diagnostics on a smartphone′′. Proc Natl Acad Sci U S A,Vol. 112, 2015, p. 5613-8.
3. Min, J., et al., ′′Computational Optics Enables Breast Cancer Profiling in Point-of-Care Settings′′. ACS Nano,Vol. 12, 2018, p. 9081-9090.
4. Pathania, D., et al., ′′Point-of-care cervical cancer screening using deep learning-based microholography′′. Theranostics,Vol. 9, 2019, p. 8438-8447.
5. Ghonge, T., et al., ′′Smartphone-imaged microfluidic biochip for measuring CD64 expression from whole blood′′. Analyst,Vol. 144, 2019, p. 3925-3935.
6. Im, H., et al., ′′Design and clinical validation of a point-of-care device for the diagnosis of lymphoma via contrast-enhanced microholography and machine learning′′. Nat Biomed Eng,Vol. 2, 2018, p. 666-674.
7. Navruz, I., et al., ′′Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array′′. Lab Chip,Vol. 13, 2013, p. 4015-23.
8. Srinivasan, B. and S. Tung, ′′Development and Applications of Portable Biosensors′′. J Lab Autom,Vol. 20, 2015, p. 365-89.
9. Goodman, J.W., Introduction to Fourier optics. 2005: Roberts and Company Publishers.
10. Sarkar, S.S., et al., ′′Pinhole diffraction holography for fabrication of high-resolution Fresnel zone plates′′. Opt Express,Vol. 22, 2014, p. 1402-12.
11. Bian, Y., et al., ′′Optical refractometry using lensless holography and autofocusing′′. Opt Express,Vol. 26, 2018, p. 29614-29628.
12. Seo, S., et al., ′′Lensfree holographic imaging for on-chip cytometry and diagnostics′′. Lab Chip,Vol. 9, 2009, p. 777-87.
13. Garcia-Sucerquia, J., et al., ′′Digital in-line holographic microscopy.′′. Applied optics,Vol. 45, 2006, p. 14.
14. Yepes, I.S.V. and M.R.R. Gesualdi, ′′Dynamic Digital Holography for recording and reconstruction of 3D images using optoelectronic devices′′. Journal of Microwaves, Optoelectronics and Electromagnetic Applications,Vol. 16, 2017, p. 801-815.
15. Schnars, U., Falldorf, C., Watson, J., & Jüptner, W., Digital Holography and Wavefront Sensing. 2015: Springer, Berlin, Heidelberg. 29.
16. Asghar, W., et al., ′′Engineering long shelf life multi-layer biologically active surfaces on microfluidic devices for point of care applications′′. Sci Rep,Vol. 6, 2016, p. 21163.
17. Sobieranski, A.C., et al., ′′Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution′′. Light Sci Appl,Vol. 4, 2015.
18. Seo, S., et al., ′′Multi-color LUCAS: Lensfree On-chip Cytometry Using Tunable Monochromatic Illumination and Digital Noise Reduction′′. Cellular and Molecular Bioengineering,Vol. 1, 2008, p. 146-156.
19. Tseng, D., et al., ′′Lensfree microscopy on a cellphone′′. Lab Chip,Vol. 10, 2010, p. 1787-92.
20. Biener, G., et al., ′′Combined reflection and transmission microscope for telemedicine applications in field settings′′. Lab Chip,Vol. 11, 2011, p. 2738-43.
21. Mudanyali, O., et al., ′′Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy′′. Lab Chip,Vol. 10, 2010, p. 2419-23.
22. Mudanyali, O., et al., ′′Lensless on-chip imaging of cells provides a new tool for high-throughput cell-biology and medical diagnostics′′. J Vis Exp,Vol., 2009.
23. Greenbaum, A., U. Sikora, and A. Ozcan, ′′Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging′′. Lab Chip,Vol. 12, 2012, p. 1242-5.
24. Seo, S., et al., ′′High-throughput lens-free blood analysis on a chip.′′. Analytical chemistry Vol. 82, 2010, p. 7.
25. Su, T.W., et al., ′′High-throughput lensfree imaging and characterization of a heterogeneous cell solution on a chip′′. Biotechnol Bioeng,Vol. 102, 2009, p. 856-868.
26. Mudanyali, O., et al., ′′Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications′′. Lab Chip,Vol. 10, 2010, p. 1417-28.
27. Rivenson, Y., et al., ′′Phase recovery and holographic image reconstruction using deep learning in neural networks′′. Light Sci Appl,Vol. 7, 2018, p. 17141.
指導教授 黃貞翰(Chen-Han Huang) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明