博碩士論文 107827013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:136 、訪客IP:3.239.192.241
姓名 鄭文翔(Wen-Hsiang Cheng)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 利用深度學習產生去骨電腦斷層掃描血管造影改進椎動脈分割
(Using Deep Learning to Generate Bone Subtraction CT Angiography for Improving Vertebral Artery Segmentation)
相關論文
★ 使用滾球篩選睡眠紡錘波檢測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 椎動脈狹窄(>50 %)所造成的中風診斷,目前仍然是神經放射科中的一個比較難以明確評估的問題。相同的,對椎動脈狹窄(>50 %)的病患是否應該接受氣球擴張術及血管支架植入手術,對手術風險和治療成效的評估,目前也是現代血管微創介入性神經放射線手術中需要深入了解和探討的課題。另外,椎動脈的曲折程度也是增加手術難度的因素,因此在術前對椎動脈狹窄的解剖位置和手術進路可能性,進行有效且便捷的分析至關緊要。由於腦中風的臨床表現會因為不同部位的腦部損傷而不同,初期診斷對非神經專科醫師而言,也不是一件簡單的工作。目前由電腦斷層血管造影所產生的影像,僅適用於放射科醫師,對於大多數沒有接受過專業放射學訓練的急診室醫師而言,這些電腦斷層血管造影所產生的影像無法立即地被判讀。因此我們假設,隨著人工智慧的發展與GPU製程技術的進步,現今對於深度學習網路的應用亦趨成熟,使得我們可以透過這項新穎的數據分析技術,協助醫師評估椎動脈的狹窄程度和曲折程度訊息,提高椎動脈狹窄的診斷正確率並提供更精確的術前風險分析。
  本研究之目的即是將電腦斷層血管造影與深度學習的優點相結合,透過深度學習網路對電腦斷層血管造影進行自動去除骨骼的處理,獲得去骨之後的電腦斷層掃描投影影像,並建立3D椎動脈模型。透過3D影像投影技術與3D椎動脈模型,可以協助急診醫師在沒有專業的放射科醫師的協助下進行初步的解讀,如此便能節省時間,並改善急診中風病患的檢傷分類,儘早安排缺血性中風病患接受治療,減低預後不良程度。同時,3D動脈模型也可以協助醫師對於頸動脈和椎動脈狹窄做更精準的血管微創介入性手術的術前評估。
摘要(英) The neuroradiological diagnosis of ischemic strokes caused by vertebral artery stenosis (>50 %) remains a challenging task. Similarly, the risk of endovascular neuroradiological operations and the efficacy of treatment outcome require further investigation. For example, the endo-vascular neuroradiological procedures such as angioplasty and stenting to treat vertebral artery stenosis for acute ischemic stroke (AIS) should be investigated in larger studies. In addition, the tortuosity of vertebral arteries is a factor which increases the operation difficulty; therefore, preoperative route planning is essential identify possible unanticipated problems and to de-velop contingency plans for these difficult cases. The initial diagnosis of strokes is not easy for non-subspecialists due to the diversity of brain injuries. Currently, the images generated from the computed tomography angiography (CTA) protocols are designed for radiologists only. They are presented to clinicians in the form of stacks of 2D images, which are not immediately comprehensible to most emergency physicians who do not have the subspecialty radiology training in AIS. On the other hand, with the advances in artificial intelligence and the manu-facturing cost drop of GPU, the application of deep learning network has become readily available. Here, we hypothesize that using this novel data analysis technology can improve the diagnostic accuracy of vertebral artery stenosis and preoperative risk assessment.
The purpose of this study is to apply the deep learning technology to process CTA images for generating bone subtracted CTA automatically. By removing bone from raw CTA images us-ing deep convolution neural networks (CNN), 3D data processing techniques such as volume rendering and marching cubes surface modeling can visualize 3D vertebral arteries on 2D screen. Therefore, clinicians in the setting of emergency rooms can evaluate vertebral artery stenosis and identify AIS patients more accurately without the assistance of neuroradiologists. This could potentially save time and improve the treatment outcome for AIS patients. In addi-tion, 3D vertebral artery model could assist clinicians for improving the precision of preopera-tive evaluation the of endovascular interventional neuroradiologic procedures.
關鍵字(中) ★ 電腦斷層掃描血管造影
★ 椎動脈
★ 中風
★ 深度學習
★ 簡化標記
★ 語意分割
關鍵字(英) ★ CTA
★ Vertebral Artery
★ Stroke
★ Deep Learning
★ Label Efficiency
★ Semantic Segmentation
論文目次 摘要                  i
英語摘要                ii
圖目錄                 vi
表目錄                 vii
1 緒論                 1
2 數據集與方法             3
2.1 CTA數據集            3
2.2 三維投影前處理與標記     3
2.2.1 體積視覺化             3
2.2.2 X射線造影模擬技術        6
2.2.3 脊椎投影             8
2.2.4 下顎骨與顱骨投影         10
2.3 深度學習DeepLab v3+模型      12
2.4 對準和去骨             15
2.5 3-D 血管分割            16
2.6 產生彩色CTA影像          17
3 深度神經網路實驗設計         21
3.1 實驗用之硬體與軟體         21
3.2 實驗設計              21
3.3 統計分析              23
4 實驗結果               25
5 討論                 33
5.1 Two-Phase CTA彩色影像前處理比較 33
5.2 網路模型參數設定          35
5.3 標記顱骨和脊椎骨的必要性      35
5.4 頸部血管模型重建策略 36
5.5 實驗設計的侷限 (Limitations) 41
6 結論與未來工作 42
7 參考文獻 43
參考文獻 1. Markus HS, van der Worp HB, Rothwell PM. Posterior circulation ischaemic stroke and transient ischaemic attack: diagnosis, investigation, and secondary preven-tion. Lancet Neurol. 2013;12(10):989-998. doi:10.1016/S1474-4422(13)70211-4.
2. Stayman AN, Nogueira RG, Gupta R. A systematic review of stenting and angioplasty of symptomatic extracranial vertebral artery stenosis. Stroke. 2011;42(8):2212-2216. doi:10.1161/STROKEAHA.110.611459.
3. Compter A, van der Worp HB, Schonewille WJ, et al. Stenting versus medical treat-ment in patients with symptomatic vertebral artery stenosis: a randomised open-label phase 2 trial. Lancet Neurol. 2015;14(6):606-614. doi:10.1016/S1474-4422(15)00017-4.
4. Markus HS, Larsson SC, Kuker W, et al. Stenting for symptomatic vertebral artery ste-nosis: The Vertebral Artery Ischaemia Stenting Trial. Neurology. 2017;89(12):1229-1236. doi:10.1212/WNL.0000000000004385.
5. Carson C, Belongie S, Greenspan H and Malik J, "Blobworld: image segmentation us-ing expectation-maximization and its application to image querying," in IEEE Transac-tions on Pattern Analysis and Machine Intelligence, vol. 24, no. 8, pp. 1026-1038, Aug. 2002, doi: 10.1109/TPAMI.2002.1023800.
6. Minaee S, Boykov Y, Porikli Fatih, et al. Image Segmentation Using Deep Learning: A Survey. arXiv:2001.05566, 2020. https://arxiv.org/abs/2001.05566v4
7. Najafabadi MM, Villanustre F, Khoshgoftaar TM, et al. Deep learning applications and challenges in big data analytics. Journal of Big Data, vol. 2, no. 1, pp. 1-21, 2015. doi: 10.1186/s40537-014-0007-7
8. S. B. Kotsiantis. Supervised machine learning: A review of classification techniques. Informatica (Slovenia), 31(3):249–268, 2007.
9. Levoy M, "Display of surfaces from volume data," in IEEE Computer Graphics and Applications, vol. 8, no. 3, pp. 29-37, May 1988, doi: 10.1109/38.511.
10. Moore CS, Liney GP, Beavis AW, Saunderson JR. A method to produce and validate a digitally reconstructed radiograph-based computer simulation for optimisation of chest radiographs acquired with a computed radiography imaging system. Br J Radiol. 2011;84(1006):890-902. doi:10.1259/bjr/30125639.
11. A. Huang, C. Lee, C. Yang and H. Liu, "Volume Visualization for Improving CT Lung Nodule Detection*," 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019, pp. 1035-1038, doi: 10.1109/EMBC.2019.8856849.
12. LC. Chen, Y Zhu, G Papandreou, et al. Encoder-Decoder with Atrous Separable Convo-lution for Semantic Image Segmentation. In ECCV, 2018. 1, 2, 7, 8. DOI:10.1007/978-3-030-01234-2_49.
13. Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Re-thinking atrous convolution for semantic image segmentation. CoRR, abs/1706.05587, 2017.
14. G. Lin, A. Milan, C. Shen and I. Reid, "RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 5168-5177, doi: 10.1109/CVPR.2017.549.
15. H. Zhao, J. Shi, X. Qi, X. Wang and J. Jia, "Pyramid Scene Parsing Network," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 6230-6239, doi: 10.1109/CVPR.2017.660..
16. F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 1800-1807, doi: 10.1109/CVPR.2017.195..
17. K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recogni-tion," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90..
18. Ronneberger O, Philipp F, and Thomas B. "U-net: Convolutional networks for bio-medical image segmentation." In International Conference on Medical image compu-ting and computer-assisted intervention, pp. 234-241. Springer, Cham, 2015.
19. Badrinarayanan V, Kendall A and Cipolla R, "SegNet: A Deep Convolutional Encod-er-Decoder Architecture for Image Segmentation." In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481-2495, 1 Dec. 2017, doi: 10.1109/TPAMI.2016.2644615.
20. Lee CW, Huang A, Wang YH, Yang CY, Chen YF, Liu HM. Intracranial dural arte-riovenous fistulas: diagnosis and evaluation with 64-detector row CT angiography. Radiology. 2010;256(1):219-228. doi:10.1148/radiol.10091835
指導教授 黃輝揚(Hui-Yang Huang) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明