博碩士論文 107827014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:52.14.84.29
姓名 王執仲(Zhi-Zhong Wang)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 離子液體應用於脂溶性蛋白之快速萃取及檢測
(Ionic liquid used for rapid extraction and detection of liposoluble protein)
相關論文
★ 具生物沾粘性免疫奈米磁珠之電化學平台於急性冠心病標誌物檢測★ 深度學習計算成像系統於生物醫學顯微影像之重建與分析
★ 磁電化學免疫分析系統 於新型冠狀病毒感染檢測之研製★ 計算照明高通量生物醫學成像顯微鏡系統
★ 表面增強拉曼散射探針及微流道系統 用於癌症細胞及外泌體表面生物標記物的多重檢測★ 菲涅耳數位全像顯微系統於全血細胞分析之研製
★ 遮罩區域卷積類神經網路於醫學影像物件偵測分析應用★ 基於深度學習之高通量顯微影像系統於血液分析
★ 可功能化編碼之表面增強拉曼光譜標籤探針於高靈敏與多重生醫分子檢測★ 高通量計算顯微影像系統之研製於生物醫學成像與分析
★ 功能性抗生物沾黏單層膜於冠狀動脈心血管疾病標誌物之檢測應用★ 鼻咽癌外泌小體藉由EB病毒潛伏膜蛋白1促進巨噬細胞免疫抑制型分化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究論文進行一系列離子液體之合成與分析並將其應用於生物脂溶性蛋白之萃取與檢測測試。脂溶性蛋白之萃取、純化與濃縮,在生物醫學相關研究與實際應用上是相當重要的工程問題,傳統生化工程上萃取分離脂溶性蛋白的方式有反微胞萃取與雙水相溶劑工程等方式,但其程序與效率仍有需多可改善之空間。離子液體具有低溶點、高熱穩定性、高極性、耐強酸與低蒸氣壓等特殊性質,並可根據所需的物理或化學特性改變其陰陽離子之組合與變化以進行難溶性分子之溶解,此外,離子液體具有安全可回收等特性,可有效降低環境之汙染,有機會取代現行常用之有機溶劑。因此,本研究採用了離子液體並針對脂溶性蛋白之萃取與純化進行相關應用與分析。
在合成與驗證部分,本研究論文首先針對一系列不同結構之離子液體進行合成與分析,並探討不同濃度和結構下的離子液體對於脂溶性蛋白之溶解能力。研究結果中顯示[1-MIM-Pentane][OMs-] 對麩質蛋白有最佳的溶解能力,在室溫下,1毫升的40% [1-MIM-Pentane][OMs-] 的離子液體可溶解737ppm的麩質蛋白。此外,在驗證部分也利用合成之離子液體以麩質蛋白為例結合免疫磁珠與磁電化學系統進行脂溶性蛋白的快速萃取檢測應用,在整體檢測上僅需數分鐘內既可成功完成脂溶性蛋白萃取與檢測分析,所測得之線性度達99%,LOD為2 ppm相較於一般的酵素免疫分析法,大幅減少樣品前處理時間並有效提升檢測速度。
本研究論文成功完成一系列離子液體之合成與分析並以麩質蛋白為例成功將其應用於生物脂溶性蛋白之萃取與檢測測試。本研究成果除了提供未來在脂溶性蛋白液相萃取相關技術上之方式之選擇外,也拓展了離子液體之相關應用層面。
摘要(英) In this research carries out the synthesis and analysis of a series of ionic liquids and applies them to the extraction and detection of biological liposoluble protein. The extraction, purification, and concentration of liposoluble protein are very important engineering issues in biomedical research and applications. The methods of extracting and separating liposoluble protein in traditional biochemical engineering include reverse microcell extraction and aqueous two-phase solvent engineering. However, those methods are still for improvement in its procedures and efficiency. Ionic liquids have special properties such as low melting point, high thermal stability, high polarity, resistance to strong acids and low vapor pressure. Ionic liquids can change the combination and change of anions and cations according to the required physical or chemical characteristics to dissolve insoluble molecules. Also, ionic liquids are safe and recyclable, which can effectively reduce environmental pollution and have the opportunity to replace the current commonly used organic solvents. Therefore, in this study, ionic liquids were used for liposoluble protein extraction and purification. Then the results were used to application and analysis.
In the synthesis and verification section, this research first synthesized and analyzed a series of ionic liquids with different structures, and explored the solubility of ionic liquids with different concentrations and structures to liposoluble protein. The results show that [1-MIM-PEG550][OMs-] has the best solubility for fat-soluble gluten protein. At room temperature, 1 ml of 40% [1-MIM-PEG550][OMs-] ionic liquid can dissolve 855ppm fat-soluble gluten protein. Also, in the verification part, the synthetic ionic liquid is used to take the fat-soluble gluten protein as an example, combined with the immune micromagnetic beads and the electrochemical system for rapid extraction and detection of liposoluble protein. In the overall detection, it only takes a few minutes to finish the extraction and detection of liposoluble protein. The correlation coefficient is 0.99 and the limit of detection is 12.6 pg/mL. Compared with the general enzyme-linked immunosorbent assay (ELISA) it greatly reduces the time of sample preparation and effectively improves the detection speed.
This research completed the synthesis and analysis of a series of ionic liquids and took the fat-soluble gluten protein as an example to successfully apply it to the extraction and detection of biological liposoluble protein. This research not only provide the technique of liposoluble protein liquid phase extraction in the future choices, but also expanded the application level of ionic liquids.
關鍵字(中) ★ 離子液體
★ 脂溶性蛋白
★ 微米磁珠
★ 電化學
★ 麩質蛋白
關鍵字(英) ★ Ionic liquid
★ Liposoluble protein
★ Magnetic beads
★ Electrochemistry
★ Gluten
論文目次 中文摘要 i
誌謝 iv
目錄 v
圖目錄 vii
表目錄 viii
專有名詞縮寫對照表 ix
符號說明 x
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機和目的 4
1-4 論文架構 4
1-5 藥品與儀器 5
1-5-1 藥品 5
1-5-2 儀器 6
第二章 離子液體 7
2-1 背景 7
2-2 離子液體合成 8
2-2-1 [X][OMs-]離子液體合成流程 9
2-2-2 [X][Cl-]離子液體合成流程 10
2-3 以核磁共振光譜儀驗證離子液體之合成 11
2-3-1 NMR樣品製備流程 12
2-3-2 離子液體之1-H NMR 12
2-4 離子液體溶解麩質蛋白定量分析 16
2-4-1 麩質蛋白樣品製備與量測 21
2-4-2 量測結果與分析 21
第三章 微米磁珠 23
3-1 背景 23
3-2 微米磁珠合成 24
3-2-1 合成策略 24
3-2-2 奈米磁性粒子合成流程 29
3-2-2 矽殼層生成 30
3-2-3 MCB-silatrane修飾微米磁珠 31
3-3 微米磁珠粒徑分析 31
3-3-1 穿透式電子顯微鏡 31
3-3-2 穿透式電子顯微鏡樣品製備 32
3-3-2 粒徑分析結果 32
3-4 磁珠XPS分析 35
3-4-1 背景與原理 35
3-4-2 XPS樣品製備 35
3-4-3 磁珠XPS結果與分析 36
3-5 固定生物分子於微米磁珠 37
3-5-1 背景與原理 37
3-5-2 樣品製備 38
第四章 脂溶性蛋白於電化學系統檢測 40
4-1 電化學背景與原理 40
4-2 電化學系統操作流程與參數設定 45
4-3 電化學系統檢測麩質蛋白濃度之檢量線 46
第五章 結論 47
參考文獻 49
參考文獻 1. https://alevelbiology.co.uk/notes/functions-of-proteins/
2. Baskir, Jesse N., T. Alan Hatton, and Ulrich W. Suter. "Protein partitioning in two‐phase aqueous polymer systems." Biotechnology and Bioengineering (1989) 34.4: p. 541-558.8
3. Carlsson, Mats, Per Linse, and Folke Tjerneld. Temperature-dependent protein partitioning in two-phase aqueous polymer systems. Macromolecules 1993. 26.7 : p. 1546-1554.
4. Murari, Gabriella Frade, et al. Use of aqueous two-phase PEG-salt systems for the removal of anionic surfactant from effluents. Journal of environmental management. 2017. 198: p. 43-49.
5. https://ir.nctu.edu.tw/bitstream/11536/102271/1/892113M009016.pdf
6. 陳泊余,「離子液體的發展及其在電化學與其它領域 的應用-獨特的溶劑系統」,CHEMISTRY(THE CHINESE CHEM. SOC., TAIPEI)June. 2006 Vol. 64, No.2, pp.235~258
7. Earle, Martyn J., and Kenneth R. Seddon. "Ionic liquids. Green solvents for the future." Pure and applied chemistry 72.7 (2000): 1391-1398.
8. 鐘琍菁,「離子液體的發展、挑戰和機會」,工業材料雜誌325期,2014
9. Anthony, Jennifer L., et al. Anion effects on gas solubility in ionic liquids. The Journal of Physical Chemistry B. 109.13 (2005): 6366-6374.
10. Ventura, Sónia PM, et al. Ionic-liquid-based aqueous biphasic systems with controlled pH: the ionic liquid anion effect. Journal of Chemical & Engineering Data 57.2 (2012): 507-512.
11. Shimojo, Kojiro, and Masahiro Goto. First application of calixarenes as extractants in room-temperature ionic liquids. Chemistry letters 33(3), 2004: 320-321.
12. Luo, Huimin, Sheng Dai, and Peter V. Bonnesen. Solvent extraction of Sr2+ and Cs+ based on room-temperature ionic liquids containing monoaza-substituted crown ethers. Analytical Chemistry 76.10 (2004): 2773-2779.
13. Yang, Qiwei, et al. Improved separation efficiency using ionic liquid–cosolvent mixtures as the extractant in liquid–liquid extraction: A multiple adjustment and synergistic effect. Chemical Engineering Journal 181 (2012): 334-342.
14. Kauffman, Stuart Alan, and Marc Ballivet. Process for obtaining DNA, RNA, peptides, polypeptides, or protein, by recombinant DNA technique. U.S. Patent No. 5,763,192. 9 Jun. 1998.
15. Pires, M. J., et al. Improving protein extraction yield in reversed micellar systems through surface charge engineering. Biotechnology and bioengineering 44.7 (1994): 773-780.
16. https://w3.iams.sinica.edu.tw/lab/lphwang/theory.htm
17. Arnold, Lionel K., R. Choudhury, and Devendralal C. Dangoria. The solubility of wheat gluten in various aqueous solutions. Proceedings of the Iowa Academy of Science. Vol. 71. No. 1. 1964.
18. Georgiou, Christos D., et al. Mechanism of Coomassie brilliant blue G-250 binding to proteins: a hydrophobic assay for nanogram quantities of proteins. Analytical and bioanalytical chemistry 391.1 (2008): 391-403.
19. Chial, H., H. Thompson, and A. Splittgerber, A spectral study of the charge forms of Coomassie Blue G. Analytical biochemistry, 1993. 209(2): p. 258-266.
20. Lee, Hakho, et al. Recent developments in magnetic diagnostic systems. Chemical reviews 115.19 (2015): 10690-10724.
21. Thanh, Nguyen TK, ed. Clinical applications of magnetic nanoparticles: From Fabrication to Clinical Applications. CRC Press, 2018.
22. Yao, Li, and Shoujun Xu. Long‐range, high‐resolution magnetic imaging of nanoparticles. Angewandte Chemie 121.31 (2009): 5789-5792.
23. Senyei, Andrew, Kenneth Widder, and George Czerlinski. Magnetic guidance of drug‐carrying microspheres. Journal of Applied Physics 49.6 (1978): 3578-3583.
24. Widder, Kenneth J., Andrew E. Senyei, and Dante G. Scarpelli. Magnetic microspheres: a model system for site specific drug delivery in vivo. Proceedings of the Society for Experimental Biology and Medicine 158.2 (1978): 141-146.
25. Zhao, Yu, et al. Rapid detection of Listeria monocytogenes in food by biofunctionalized magnetic nanoparticle based on nuclear magnetic resonance. Food Control 71 (2017): 110-116.
26. Wang, Songbai, et al. Magnetic relaxation switch immunosensor for the rapid detection of the foodborne pathogen Salmonella enterica in milk samples. Food control 55 (2015): 43-48.
27. Chen, Yiping, et al. One-step detection of pathogens and viruses: combining magnetic relaxation switching and magnetic separation. ACS nano 9.3 (2015): 3184-3191.
28. Massart R., Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17 (1981) 1247-1248.
29. Wan, Jiaqi, et al. Incorporation of magnetite nanoparticle clusters in fluorescent silica nanoparticles for high-performance brain tumor delineation. Nanotechnology 21.23 (2010): 235104.
30. W.Stöber,A.Fink,Controlled growth of monodisperse silica spheres in the micron size range,J.Colloid InterfaceSci. 26 (1968) 62–69.
31. Satoh, Tomoaki, et al. Particle size distributions produced by hydrolysis and condensation of tetraethylorthosilicate. Journal of chemical engineering of Japan 30.4 (1997): 759-762.
32. Do Kim, Ki, and Hee Taik Kim. Formation of silica nanoparticles by hydrolysis of TEOS using a mixed semi-batch/batch method. Journal of sol-gel science and technology 25.3 (2002): 183-189.
33. Matsoukas, Themis, and Erdogan Gulari. Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate. (1988).
34. Chou, K-S., and Chen Chih Chen. Preparation and characterization of monodispersed silica colloids. Advances in Technology of Materials and Materials Processing Journal 5.1 (2003): 31-35.
35. Soreta, Tesfaye Refera. Electrochemically deposited metal nanostructures for application in genosensors. Universitat Rovira i Virgili, 2009.
36. Penna, Matthew, et al. Hydration and dynamics of ligands determine the antifouling capacity of functionalized surfaces. The Journal of Physical Chemistry C 123.50 (2019): 30360-30372.
37. Chen, S., et al., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
38. Chen, W.-H., et al., Silanization of solid surfaces via mercaptopropylsilatrane: a new approach of constructing gold colloid monolayers. RSC Advances, 2014. 4(87): p. 46527-46535.
39. Tseng, Y.T., et al., Facile Functionalization of Polymer Surfaces in Aqueous and Polar Organic Solvents via 3-Mercaptopropylsilatrane. ACS Appl Mater Interfaces, 2016. 8(49): p. 34159-34169.
40. Zong, W. J., et al. XPS analysis of the groove wearing marks on flank face of diamond tool in nanometric cutting of silicon wafer. International Journal of Machine Tools and Manufacture 48.15 (2008): 1678-1687.
41. Patil, S.H., et al., To form layer by layer composite film in view of its application as supercapacitor electrode by exploiting the techniques of thin films formation just around the corner. Electrochimica Acta, 2018. 265: p. 556-568.
42. Bourlier, Y., et al., Investigation of InAlN Layers Surface Reactivity after Thermal Annealings: A Complete XPS Study for HEMT. ECS Journal of Solid State Science and Technology, 2018. 7(6): p. P329-P338.
43. Bally, R.a. and T. Gribnau, Some aspects of the chromogen 3, 3, 5, 5-tetramethylbenzidine as hydrogen donor in a horseradish peroxidase assay. Clinical Chemistry and Laboratory Medicine, 1989. 27(10): p. 791-796.
44. Rhee, S.G., et al., Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol Cells, 2010. 29(6): p. 539-49.
45. Frasca, Stefano. Biocatalysis on nanostructured surfaces: investigation and application of redox proteins using spectro-electrochemical methods. (2012).
指導教授 黃貞翰(Chen-Han Huang) 審核日期 2020-10-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明