博碩士論文 107827602 詳細資訊

以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:
姓名 蒂利雅(Adelia Riezka Rahim)  查詢紙本館藏   畢業系所 生醫科學與工程學系
(Fermentation of Leuconostoc mesenteroides reduces abdominal fat accumulation in high-fat diet mice)
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 表皮葡萄球菌在人類皮膚微生物總體對皮膚訊號與腦波訊號影響
★ 土壤微生物組體研究:藉由內生細菌誘導之高GABA含量水稻增加神經肽Y以及減輕小鼠焦慮★ 選擇性發酵引發劑(SFI)觸發表皮葡萄球菌發酵以緩解UV-B誘導的自由基生成
★ Identify and characterize the fermenting and electrogenic skin bacteria using selective prebiotics★ 有益微生物的真菌學和細菌學研究: 在農業和人類健康中的應用
★ 人體皮膚致電微生物組通過調節鐵和自由基來減輕紫外線B引起的皮膚損傷。★ BACILLUS AMYLOLIQUEFACIENS生長在高GABA含量稻米刺激膠原蛋白合成以及減緩磷酸三鈣誘導產生的皮膚搔癢
★ 人體汗水之乳酸鈉觸發人類皮膚益生菌之表皮葡萄球菌發酵及皮膚電導之應用★ 5-甲基糠醛抑制L-乳酸葡萄球菌的發酵 表皮葡萄球菌和雙乙酰產生:一種淺在的新型除臭劑靶向人體汗液中的细菌發酵
★ 甘油對於皮膚細菌和皮膚發電之影響★ 運用老鼠鼻腔內定植人類表皮葡萄球菌之策略以降低SARS-CoV-2之核殼蛋白於肺中誘導的介白素6
★ Amylose mediated electricity production of Staphylococcus epidermidis for inhibition of Cutibacterium acnes growth★ 從人類皮膚微生物總體中鑑定溶解磷酸鈣的細菌
★ 皮膚表皮葡萄球菌透過發酵抑制紅色毛癬菌之研究★ 建立人類皮膚益生微生物菌組銀行
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 腸道菌的種類影響著體內的新陳代謝,調節身體的營養吸收,可依此最終控制體重,因此腸道菌的分佈也導致肥胖及其他多種疾病形成。本次研究主要觀察從蒙古奶酪凝乳中分離出的益生菌Leuconostoc mesenteroides EH-1(LM)對高脂飲食小鼠腹部脂肪之影響。將ICR雌性小鼠分為五組:正常飲食、高脂飲食、高脂飲食+2% 葡萄糖、高脂飲食 + LM、 與高脂飲食 + LM + 葡萄糖。每3天口服攝入 LM 一次,一共持續25天。 與高脂飲食小鼠相比,當小鼠攝入LM後,能減少小鼠全身和腹部脂肪重量。LM還會降低高脂飲食小鼠的IL-6表現。 我們的研究結果表明,高脂飲食小鼠的腹部脂肪組織中4-羥基壬烯醛4-hydroxynonenal (4HNE)和過氧化物酶體增殖物活化受體γ (peroxisome proliferator-activated receptor-γ, PPARγ) 表現增加,然而當提供LM給小鼠後,可降低HNE和PPARγ的表達。也額外發現,LM可產生電子,額外添加葡萄糖能增加電子的產生。LM產生的電子能使細菌附著在腸道表面中,進而提高細菌存活率和丁酸的產生。 這些結果表明,LM將來可能作為一種潛在益生菌,治療內臟脂肪或肥胖症。 不過還需要進一步研究分析,了解LM如何減少小鼠腹部脂肪。
摘要(英) Gut microbiota profile affects the metabolism within the body. Gut microbiota is capable to regulate nutrients acquisition throughout the body and eventually bodyweight that leading to the development of several diseases, including obesity. This study aims to observe probiotic Leuconostoc mesenteroides EH-1 (LM), isolated from Mongolian cheese curd, effect in reducing belly fat in high-fat diet mice. Female ICR mice were divided into five groups, normal diet, high-fat diet (HFD), high-fat diet with 2% glucose, high-fat diet and LM administration, high-fat diet with LM and 2% glucose administration. LM was administrated by oral gavage every 3 days for 25 days. LM administration was able to reduce body weight, belly fat accumulation, IL-6 plasma level, 4HNE, and PPARγ in HFD mice. We also found that LM can produce electrons, and the addition of glucose will enhance electron production. The electron produced by LM plays a role in the bacterial attachment in the gut surface, thus increasing the survival rate and butyrate acid production. These results suggest that LM bacteria have a potential effect as a probiotic treatment against visceral fat or obesity in the future. Further analysis was needed to complete the pathway of LM bacteria in reducing mice belly fat.
關鍵字(中) ★ 內臟脂肪
★ 腸膜明串珠菌
★ 高脂飲食
★ 電子
關鍵字(英) ★ visceral fat
★ Leuconostoc mesenteroides
★ high fat diet
★ electron
論文目次 ABSTRACT……………………………………………………………………………… I
ACKNOWLEDGEMENTS…………………………………………………………….. III
TABLE OF CONTENTS……………………………………………………………….. IV
LIST OF FIGURES……………………………………………………………………... VI
ABBREVIATIONS LIST……………………………………………………………… VII
2.1 Overweight and Obesity 4
2.2 Probiotic and Short-Chain Fatty Acid 5
2.3 Leuconostoc mesenteroides 9
3.1 Glucose fermentation of L. mesenteroides EH-1 11
3.2 L. mesenteroides EH-1 Administration to High-Fat Diet Mice 11
3.3 High Performance Liquid Chromatography (HPLC) Analysis 12
3.4 The Enzyme-linked Immunosorbent Assay (ELISA) Analysis 12
3.5 Electricity Measurement 13
3.6 Cell Culture 14
3.7 TMN 355-treated Bacteria Administration to High-Fat Diet Mice 14
3.6 Western Blot 15
3.7 Statistical Analysis 16
4.1 Results 17
4.1.1 L. mesenteroides EH-1 Properties 17
4.1.2 Electricity Production by L. mesenteroides EH-1 18
4.1.3 Effects of L. mesenteroides EH-1 in High-fat Diet Mice 22
4.1.4 Effects of L. mesenteroides EH-1 pre-treated with TMN 355 in high-fat diet mice 25
4.1.5 Effects of L. mesenteroides EH-1 electricity production on Caco-2 cells 26
4.2 Discussion 28
參考文獻 Ahmed-Belkacem, A., Colliandre, L., Ahnou, N., Nevers, Q., Gelin, M., Bessin, Y., Brillet, R., Cala, O., Douguet, D., Bourguet, W., Krimm, I., Pawlotsky, J. M., & Guichou, J. F. (2016). Fragment-based discovery of a new family of non-peptidic small-molecule cyclophilin inhibitors with potent antiviral activities. Nature communications, 7, 12777. https://doi.org/10.1038/ncomms12777
Allameh, S. K., Daud, H., Yusoff, F. M., Saad, C. R., & Ideris, A. (2012). Isolation, identification and characterization of Leuconostoc mesenteroides as a new probiotic from intestine of snakehead fish (Channa striatus). African Journal of Biotechnology, 11(16). https://doi.org/10.5897/ajb11.1871
Almeida-Suhett, C. P., Scott, J. M., Graham, A., Chen, Y., & Deuster, P. A. (2019). Control diet in a high-fat diet study in mice: Regular chow and purified low-fat diet have similar effects on phenotypic, metabolic, and behavioral outcomes. Nutritional neuroscience, 22(1), 19–28. https://doi.org/10.1080/1028415X.2017.1349359
Alpers, D. H. (2003). Digestion, Absorption and Metabolism. H. Osborn. Carbohydrates. (p.881 – 887). Washington, USA: Elsevier.
Ashraf, R., & Shah, N. P. (2014). Immune system stimulation by probiotic microorganisms. Critical reviews in food science and nutrition, 54(7), 938–956. https://doi.org/10.1080/10408398.2011.619671
Bajpai, V. K., Rather, I. A., Majumder, R., Alshammari, F. H., Nam, G.-J., & Park, Y.-H. (2016). Characterization and Antibacterial Mode of Action of Lactic Acid Bacterium Leuconostoc mesenteroides HJ69 from Kimchi. Journal of Food Biochemistry, 41(1), e12290. doi:10.1111/jfbc.12290
Benedetti, A., Pompella, A., Fulceri, R., Romani, A., & Comporti, M. (1986). Detection of 4-hydroxynonenal and other lipid peroxidation products in the liver of bromobenzene-poisoned mice. Biochimica et biophysica acta, 876(3), 658–666. https://doi.org/10.1016/0005-2760(86)90055-x
Bleich, S., Cutler, D., Murray, C., & Adams, A. (2008). Why is the developed world obese?. Annual review of public health, 29, 273–295. https://doi.org/10.1146/annurev.publhealth.29.020907.090954
Brake, D. K., Smith, E. O., Mersmann, H., Smith, C. W., & Robker, R. L. (2006). ICAM-1 expression in adipose tissue: effects of diet-induced obesity in mice. American journal of physiology. Cell physiology, 291(6), C1232–C1239. https://doi.org/10.1152/ajpcell.00008.2006
Brownlee M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414(6865), 813–820. https://doi.org/10.1038/414813a
Cani, P. D., Possemiers, S., Van de Wiele, T., Guiot, Y., Everard, A., Rottier, O., Geurts, L., Naslain, D., Neyrinck, A., Lambert, D. M., Muccioli, G. G., & Delzenne, N. M. (2009). Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut, 58(8), 1091–1103. https://doi.org/10.1136/gut.2008.165886
Chang, H. C., Yang, H. C., Chang, H. Y., Yeh, C. J., Chen, H. H., Huang, K. C., & Pan, W. H. (2017). Morbid obesity in Taiwan: Prevalence, trends, associated social demographics, and lifestyle factors. PloS one, 12(2), e0169577. https://doi.org/10.1371/journal.pone.0169577
Chun, B. H., Kim, K. H., Jeon, H. H., Lee, S. H., & Jeon, C. O. (2017). Pan-genomic and transcriptomic analyses of Leuconostoc mesenteroides provide insights into its genomic and metabolic features and roles in kimchi fermentation. Scientific reports, 7(1), 11504. https://doi.org/10.1038/s41598-017-12016-z
Dasuri, K., Ebenezer, P., Fernandez-Kim, S. O., Zhang, L., Gao, Z., Bruce-Keller, A. J., Freeman, L. R., & Keller, J. N. (2013). Role of physiological levels of 4-hydroxynonenal on adipocyte biology: implications for obesity and metabolic syndrome. Free radical research, 47(1), 8–19. https://doi.org/10.3109/10715762.2012.733003
den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J., & Bakker, B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of lipid research, 54(9), 2325–2340. https://doi.org/10.1194/jlr.R036012
Ding, S., Chi, M. M., Scull, B. P., Rigby, R., Schwerbrock, N. M., Magness, S., Jobin, C., & Lund, P. K. (2010). High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PloS one, 5(8), e12191. https://doi.org/10.1371/journal.pone.0012191
Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M., & Shimomura, I. (2004). Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of clinical investigation, 114(12), 1752–1761. https://doi.org/10.1172/JCI21625
Gao, Z., Yin, J., Zhang, J., Ward, R. E., Martin, R. J., Lefevre, M., Cefalu, W. T., & Ye, J. (2009). Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes, 58(7), 1509–1517. https://doi.org/10.2337/db08-1637
Ge, H., Li, X., Weiszmann, J., Wang, P., Baribault, H., Chen, J. L., Tian, H., & Li, Y. (2008). Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology, 149(9), 4519–4526. https://doi.org/10.1210/en.2008-0059
Guan, Y., & Breyer, M. D. (2001). Peroxisome proliferator-activated receptors (PPARs): novel therapeutic targets in renal disease. Kidney international, 60(1), 14–30. https://doi.org/10.1046/j.1523-1755.2001.00766.x
Heimann, E., Nyman, M., & Degerman, E. (2014). Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes. Adipocyte, 4(2), 81–88. https://doi.org/10.4161/21623945.2014.960694
Hooper, L. V., Wong, M. H., Thelin, A., Hansson, L., Falk, P. G., & Gordon, J. I. (2001). Molecular analysis of commensal host-microbial relationships in the intestine. Science (New York, N.Y.), 291(5505), 881–884. https://doi.org/10.1126/science.291.5505.881
Hotamisligil, G. S., Shargill, N. S., & Spiegelman, B. M. (1993). Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science (New York, N.Y.), 259(5091), 87–91. https://doi.org/10.1126/science.7678183
Hotel, A. (2001). Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria – Joint FAO/WHO Expert Consultation.
Ji, C., Amarnath, V., Pietenpol, J. A., & Marnett, L. J. (2001). 4-hydroxynonenal induces apoptosis via caspase-3 activation and cytochrome c release. Chemical research in toxicology, 14(8), 1090–1096. https://doi.org/10.1021/tx000186f
Kushner, R. (2007) Treatment of the Obese Patient (Contemporary Endocrinology). (p.158). Totowa, NJ: Humana Press.
Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 11070–11075. https://doi.org/10.1073/pnas.0504978102
Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Microbial ecology: human gut microbes associated with obesity. Nature, 444(7122), 1022–1023. https://doi.org/10.1038/4441022a
Light, S. H., Su, L., Rivera-Lugo, R., Cornejo, J. A., Louie, A., Iavarone, A. T., Ajo-Franklin, C. M., & Portnoy, D. A. (2018). A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature, 562(7725), 140–144. https://doi.org/10.1038/s41586-018-0498-z
Liu, S. Q. (2011). Lactic Acid Bacteria | Leuconostoc spp. R Holland. Encyclopedia of Dairy Sciences 2nd ed. (p.138 – 142). Boston, MA: Elsevier,
Liu, T., Zhang, L., Joo, D., & Sun, S. C. (2017). NF-κB signaling in inflammation. Signal transduction and targeted therapy, 2, 17023–. https://doi.org/10.1038/sigtrans.2017.23
Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavlov, A., Pavlova, N., Karamychev, V., Polouchine, N., Shakhova, V., Grigoriev, I., Lou, Y., Rohksar, D., Lucas, S., Huang, K., Goodstein, D. M., Hawkins, T., Plengvidhya, V., Welker, D., … Mills, D. (2006). Comparative genomics of the lactic acid bacteria. Proceedings of the National Academy of Sciences of the United States of America, 103(42), 15611–15616. https://doi.org/10.1073/pnas.0607117103
Makki, K., Froguel, P., & Wolowczuk, I. (2013). Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN inflammation, 2013, 139239. https://doi.org/10.1155/2013/139239
Mattson M. P. (2009). Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Experimental gerontology, 44(10), 625–633. https://doi.org/10.1016/j.exger.2009.07.003
Million, M., Lagier, J. C., Yahav, D., & Paul, M. (2013). Gut bacterial microbiota and obesity. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 19(4), 305–313. https://doi.org/10.1111/1469-0691.12172
Nakazono, K., Watanabe, N., Matsuno, K., Sasaki, J., Sato, T., & Inoue, M. (1991). Does superoxide underlie the pathogenesis of hypertension?. Proceedings of the National Academy of Sciences of the United States of America, 88(22), 10045–10048. https://doi.org/10.1073/pnas.88.22.10045
National Center for Biotechnology Information. (2019). peptidyl-prolyl cis-trans isomerase A (cyclophilin A) [Leuconostoc mesenteroides]. [online]. Available at: < https://www.ncbi.nlm.nih.gov/protein/1596936726> [Accessed 5 June 2020].
Ohara, Y., Peterson, T. E., & Harrison, D. G. (1993). Hypercholesterolemia increases endothelial superoxide anion production. The Journal of clinical investigation, 91(6), 2546–2551. https://doi.org/10.1172/JCI116491
Ouchi, N., Parker, J. L., Lugus, J. J., & Walsh, K. (2011). Adipokines in inflammation and metabolic disease. Nature reviews. Immunology, 11(2), 85–97. https://doi.org/10.1038/nri2921
Parada Venegas, D., De la Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., Harmsen, H., Faber, K. N., & Hermoso, M. A. (2019). Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Frontiers in immunology, 10, 277. https://doi.org/10.3389/fimmu.2019.00277
Poortinga, A. T., Bos, R., & Busscher, H. J. (2001). Charge transfer during staphylococcal adhesion to TiNOX coatings with different specific resistivity. Biophysical chemistry, 91(3), 273–279. https://doi.org/10.1016/s0301-4622(01)00177-6
Ridaura, V. K., Faith, J. J., Rey, F. E., Cheng, J., Duncan, A. E., Kau, A. L., Griffin, N. W., Lombard, V., Henrissat, B., Bain, J. R., Muehlbauer, M. J., Ilkayeva, O., Semenkovich, C. F., Funai, K., Hayashi, D. K., Lyle, B. J., Martini, M. C., Ursell, L. K., Clemente, J. C., Van Treuren, W., … Gordon, J. I. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science (New York, N.Y.), 341(6150), 1241214. https://doi.org/10.1126/science.1241214
Samuel, B. S., Shaito, A., Motoike, T., Rey, F. E., Backhed, F., Manchester, J. K., Hammer, R. E., Williams, S. C., Crowley, J., Yanagisawa, M., & Gordon, J. I. (2008). Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16767–16772. https://doi.org/10.1073/pnas.0808567105
Schadinger, S. E., Bucher, N. L., Schreiber, B. M., & Farmer, S. R. (2005). PPARgamma2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. American journal of physiology. Endocrinology and metabolism, 288(6), E1195–E1205. https://doi.org/10.1152/ajpendo.00513.2004
Seo, B. J., Rather, I. A., Kumar, V. J., Choi, U. H., Moon, M. R., Lim, J. H., & Park, Y. H. (2012). Evaluation of Leuconostoc mesenteroides YML003 as a probiotic against low-pathogenic avian influenza (H9N2) virus in chickens. Journal of applied microbiology, 113(1), 163–171. https://doi.org/10.1111/j.1365-2672.2012.05326.x
Shao, X., Fang, K., Medina, D., Wan, J., Lee, J., & Hong, S. (2019). The probiotic, Leuconostoc mesenteroides , inhibits Listeria monocytogenes biofilm formation. Journal of Food Safety, 40(2). https://doi.org/10.1111/jfs.12750
Stiles, M. E., & Holzapfel, W. H. (1997). Lactic acid bacteria of foods and their current taxonomy. International journal of food microbiology, 36(1), 1–29. https://doi.org/10.1016/s0168-1605(96)01233-0
Tan, J., McKenzie, C., Potamitis, M., Thorburn, A. N., Mackay, C. R., & Macia, L. (2014). The role of short-chain fatty acids in health and disease. Advances in immunology, 121, 91–119. https://doi.org/10.1016/B978-0-12-800100-4.00003-9
Tan, J., McKenzie, C., Potamitis, M., Thorburn, A. N., Mackay, C. R., & Macia, L. (2014). The role of short-chain fatty acids in health and disease. Advances in immunology, 121, 91–119. https://doi.org/10.1016/B978-0-12-800100-4.00003-9
Tazoe, H., Otomo, Y., Kaji, I., Tanaka, R., Karaki, S. I., & Kuwahara, A. (2008). Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. Journal of physiology and pharmacology: an official journal of the Polish Physiological Society, 59 Suppl 2, 251–262
Toyokuni, S., Yamada, S., Kashima, M., Ihara, Y., Yamada, Y., Tanaka, T., Hiai, H., Seino, Y., & Uchida, K. (2000). Serum 4-hydroxy-2-nonenal-modified albumin is elevated in patients with type 2 diabetes mellitus. Antioxidants & redox signaling, 2(4), 681–685. https://doi.org/10.1089/ars.2000.2.4-681
Traisaeng, S., Batsukh, A., Chuang, T. H., Herr, D. R., Huang, Y. F., Chimeddorj, B., & Huang, C. M. (2020). Leuconostoc mesenteroides fermentation produces butyric acid and mediates Ffar2 to regulate blood glucose and insulin in type 1 diabetic mice. Scientific reports, 10(1), 7928. https://doi.org/10.1038/s41598-020-64916-2
Tremaroli, V., & Backhed, F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature, 489(7415), 242+.
Tungland, B. (2018). Short-Chain Fatty Acid Production and Functional Aspects on Host Metabolism. 10.1016/B978-0-12-814649-1.00002-8.
Wilkins, R., Cross, S., Megson, I., & Meredith, D. (2016) Oxford Handbook of Medical Sciences 2nd ed. (p.180) Oxford: Oxford University Press.
World Health Organization. (2020). WHO | Obesity. [online] Available at: <https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight> [Accessed 5 June 2020].
Wu, J., Zhou, Z., Hu, Y., & Dong, S. (2012). Butyrate-induced GPR41 activation inhibits histone acetylation and cell growth. Journal of genetics and genomics = Yi chuan xue bao, 39(8), 375–384. https://doi.org/10.1016/j.jgg.2012.05.008
Xu, H., Barnes, G. T., Yang, Q., Tan, G., Yang, D., Chou, C. J., Sole, J., Nichols, A., Ross, J. S., Tartaglia, L. A., & Chen, H. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. The Journal of clinical investigation, 112(12), 1821–1830. https://doi.org/10.1172/JCI19451
Yamashita, H., Fujisawa, K., Ito, E., Idei, S., Kawaguchi, N., Kimoto, M., Hiemori, M., & Tsuji, H. (2007). Improvement of obesity and glucose tolerance by acetate in Type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Bioscience, biotechnology, and biochemistry, 71(5), 1236–1243. https://doi.org/10.1271/bbb.60668
Yazdi, F. T., Clee, S. M., & Meyre, D. (2015). Obesity genetics in mouse and human: back and forth, and back again. PeerJ, 3, e856. https://doi.org/10.7717/peerj.856
指導教授 黃俊銘(Chun-Ming Huang) 審核日期 2020-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明