博碩士論文 107827603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.236.16.13
姓名 普拉索(Prakoso Adi)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 選擇性發酵引發劑(SFI)觸發表皮葡萄球菌發酵以緩解UV-B誘導的自由基生成
(The Selective Fermentation Initiator (SFI) Triggers Fermentation of S. epidermidis to Mitigate UV-B Induced Free-radical Generation)
相關論文
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 表皮葡萄球菌在人類皮膚微生物總體對皮膚訊號與腦波訊號影響
★ 土壤微生物組體研究:藉由內生細菌誘導之高GABA含量水稻增加神經肽Y以及減輕小鼠焦慮★ Fermentation of Leuconostoc mesenteroides reduces abdominal fat accumulation in high-fat diet mice
★ Identify and characterize the fermenting and electrogenic skin bacteria using selective prebiotics★ 有益微生物的真菌學和細菌學研究: 在農業和人類健康中的應用
★ 人體皮膚致電微生物組通過調節鐵和自由基來減輕紫外線B引起的皮膚損傷。★ BACILLUS AMYLOLIQUEFACIENS生長在高GABA含量稻米刺激膠原蛋白合成以及減緩磷酸三鈣誘導產生的皮膚搔癢
★ 人體汗水之乳酸鈉觸發人類皮膚益生菌之表皮葡萄球菌發酵及皮膚電導之應用★ 5-甲基糠醛抑制L-乳酸葡萄球菌的發酵 表皮葡萄球菌和雙乙酰產生:一種淺在的新型除臭劑靶向人體汗液中的细菌發酵
★ 甘油對於皮膚細菌和皮膚發電之影響★ 運用老鼠鼻腔內定植人類表皮葡萄球菌之策略以降低SARS-CoV-2之核殼蛋白於肺中誘導的介白素6
★ Amylose mediated electricity production of Staphylococcus epidermidis for inhibition of Cutibacterium acnes growth★ 從人類皮膚微生物總體中鑑定溶解磷酸鈣的細菌
★ 皮膚表皮葡萄球菌透過發酵抑制紅色毛癬菌之研究★ 建立人類皮膚益生微生物菌組銀行
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 目前已經發現全球輻射水平以驚人的速度增加,來自陽光的UV-B可以直接滲透到皮膚的表皮區域。這就增加了對UV-B輻射的局部補充劑的需求,該補充劑不僅是無毒的而且還不會破壞人類皮膚微生物組。UV-B輻射可以通過增加細胞壓力或在表皮水平上催化增生直接淹沒組織抗氧化劑,甚至長時間暴露也會導致早衰或皮膚癌。人的皮膚內源性抗氧化劑防禦系統有一些局限性,即它們無法對慢性UV-B脅迫起作用。因此,我們的身體需要外部補充劑來防止壓力增加。已經研究了不管是活或死的益生菌細菌可以減輕人類的炎症。有趣的是,局部使用益生菌皮膚細菌表皮葡萄球菌(S. epidermidis)ATCC 12228及其特定的益生元選擇性發酵引髮劑(SFI)稱為椰油辛酸(LCC)可以改善慢性經UV-B照射的小鼠皮膚中自由基的產生。我們的皮膚益生菌具有益生元SFI,經發酵後具有電化學活性。我們的研究成功地證明了添加LCC的表皮葡萄球菌ATCC 12228對UV-B照射的小鼠皮膚的局部光保護作用。此外,我們的實驗模型顯示了該細菌的LCC發酵產生的電子在減輕UV-B誘導的ROS產生中的重要作用。這些研究表明,由於缺乏電子平衡,益生菌細菌可以迅速在自由基位點上釋放電子。將來,我們在這項研究中的整個研究將為解決傳統商業乳液防曬霜的缺點提供一種新穎的替代方法,從而可以克服紫外線對皮膚的不利影響。
摘要(英) Global radiation levels have been found to increase at an alarming rate. UV-B irradiation from sunlight can directly penetrate up to the epidermal region of skin and can lead to oxidative damage in the skin. This has risen the need for topical supplement against UV-B radiation that not only a non-toxic but also the one which does not disrupt human skin microbiome. UV-B radiation can directly inundate tissue antioxidants by increased cellular stress, catalyzes hyperplasia at the epidermal level, or even lead to premature aging or skin cancer upon prolonged exposure. Human skin endogenous antioxidant defense system has some limitation that they failed to act upon chronic UV-B stress. Therefore our body needs external supplements to protect from augmented stress factors. Probiotic bacteria either live or dead has been studied to reduce inflammation in humans. Interestingly, the topical application of FDA approved live probiotic skin bacteria Staphylococcus epidermidis (S. epidermidis) ATCC 12228 with its specific prebiotic selective fermentation initiator (SFI) named coco-caprylate (LCC) can ameliorate free radical generation in UV-B irradiated mice skin over chronic stress. Our skin probiotic bacteria with prebiotic SFI upon fermentation has been proven electrochemically active. Our study has successfully demonstrated the photo-protective effect of LCC supplemented S. epidermidis ATCC 12228 topical application on the UV-B irradiated mice skin. Moreover, our experimental models have shown the important role of generated electron from LCC fermentation can mitigate the UV-B induced ROS generation. Our study showed that electrobiotic bacteria can promptly donate electrons on the site of free radicals as they are lack of electron balance. In the future, our whole study in this research will provide a novel alternative way to solve the drawbacks of traditional commercial lotion sunscreens, so it can overcome the challenges of UV light exposure over the skin.
關鍵字(中) ★ 電生物學
★ 氧化應激
★ 皮膚發酵引發劑(SFI)
★ 抗氧化劑
關鍵字(英) ★ Electrobiotic
★ Oxidative Stress
★ Selective Fermentation Initiator (SFI)
★ Antioxidants
論文目次 Table of Contents
Abstract I
Acknowledgments II
Table of Contents III
List of Figures V
Abbrevation List VII
Chapter 1 Introduction 1
Chapter 2 Literature review 5
2.1 Electrogenic Bacteria 5
2.2 Bacterial Extracellular Electron Transfer Pathway 5
2.3 Microbial Fuel Cell 6
2.4 Electrogenic S. epidermidis Bacteria 8
2.5 Electron as Antioxidant 10
Chapter 3 Materials and Methods 13
3.1 Ethics statement 13
3.2 Bacterial culture and fermentation 13
3.3 Electricity detection in vitro 13
3.4 Cyclic voltammetry 14
3.5 Extraction of bacterial RNA 14
3.6 Minimum bactericidal concentration (MBC) 15
3.7 Real-time q-PCR 15
3.8 Gas chromatography-mass spectrometry (GC-MS) analysis 16
3.9 UV-B exposure 16
3.10 Western blotting 17
3.11 Haemotoxylin and Eosin (H&E) staining 18
3.12 Ferric iron reductase assay 18
3.13 Statistical analysis 18
Chapter 4 Results 19
4.1 Selective fermentation initiator (SFI) screening by checking the fermentation activity and electricity generation of S. epidermidis ATCC 12228 19
4.2 UV-B induced ROS mitigation and photo-protective effect of LCC supplemented S. epidermidis ATCC 12228 23
4.3 Antioxidant properties of generated electron from LCC fermentation by S. epidermidis ATCC 12228 26
Chapter 5 Conclusion and Discussion 33
References 38
參考文獻 Afaq, F., Adhami, V. M., & Mukhtar, H. (2005). Photochemoprevention of ultraviolet B signaling and photocarcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571(1-2), 153-173.
Afaq, F., & Mukhtar, H. (2006). Botanical antioxidants in the prevention of photocarcinogenesis and photoaging. Experimental dermatology, 15(9), 678-684.
Afaq, F., Syed, D. N., Malik, A., Hadi, N., Sarfaraz, S., Kweon, M.-H., Khan, N., Zaid, M. A., & Mukhtar, H. (2007). Delphinidin, an anthocyanidin in pigmented fruits and vegetables, protects human HaCaT keratinocytes and mouse skin against UVB-mediated oxidative stress and apoptosis. Journal of Investigative Dermatology, 127(1), 222-232.
Ahmed-Belkacem, A., Colliandre, L., Ahnou, N., Nevers, Q., Gelin, M., Bessin, Y., Brillet, R., Cala, O., Douguet, D., & Bourguet, W. (2016). Fragment-based discovery of a new family of non-peptidic small-molecule cyclophilin inhibitors with potent antiviral activities. Nature communications, 7(1), 1-11.
Amaro-Ortiz, A., Yan, B., & D′Orazio, J. A. (2014). Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation. Molecules, 19(5), 6202-6219.
Aruoma, O. (1994). Nutrition and health aspects of free radicals and antioxidants. Food and Chemical Toxicology, 32(7), 671-683.
Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative medicine and cellular longevity, 2014.
Bickers, D. R., & Athar, M. (2006). Oxidative stress in the pathogenesis of skin disease. Journal of Investigative Dermatology, 126(12), 2565-2575.
Blum, H. F., McVaugh, J., Ward, M., & Bush, H. L. (1975). Epidermal hyperplasia induced by ultraviolet radiation; error and uncertainty of measurement. Photochemistry and photobiology, 21(4), 255-260.
Bos, J. D., & Luiten, R. M. (2009). Skin immune system. In Skin Cancer after Organ Transplantation (pp. 45-62). Springer.
Bowden, G. T. (2004). Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nature Reviews Cancer, 4(1), 23-35.
Büttner, H., Mack, D., & Rohde, H. (2015). Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Frontiers in cellular and infection microbiology, 5, 14.
Byrd Allyson, L., Yasmine, B., & Segre Julia, A. (2018). The human skin microbiome [J]. Nat Rev Microbiol, 16, 143-155.
Byrne, J. M., Klueglein, N., Pearce, C., Rosso, K. M., Appel, E., & Kappler, A. (2015). Redox cycling of Fe (II) and Fe (III) in magnetite by Fe-metabolizing bacteria. Science, 347(6229), 1473-1476.
Cadet, J., & Douki, T. (2018). Formation of UV-induced DNA damage contributing to skin cancer development. Photochemical & Photobiological Sciences, 17(12), 1816-1841.
[Record #91 is using a reference type undefined in this output style.]
Carpenter, J. M., Zhong, F., Ragusa, M. J., Louro, R. O., Hogan, D. A., & Pletneva, E. V. (2020). Structure and redox properties of the diheme electron carrier cytochrome c4 from Pseudomonas aeruginosa. Journal of inorganic biochemistry, 203, 110889.
Cate, R. L., & Roche, T. E. (1979). Function and regulation of mammalian pyruvate dehydrogenase complex. Acetylation, interlipoyl acetyl transfer, and migration of the pyruvate dehydrogenase component. Journal of Biological Chemistry, 254(5), 1659-1665.
Che, J., I Okeke, C., Hu, Z.-B., & Xu, J. (2015). DSPE-PEG: a distinctive component in drug delivery system. Current pharmaceutical design, 21(12), 1598-1605.
Chen, C., Shen, Y., An, D., & Voordouw, G. (2017). Use of acetate, propionate, and butyrate for reduction of nitrate and sulfate and methanogenesis in microcosms and bioreactors simulating an oil reservoir. Appl. Environ. Microbiol., 83(7), e02983-02916.
Ci, S., Wen, Z., Chen, J., & He, Z. (2012). Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells. Electrochemistry Communications, 14(1), 71-74.
Dalleau, S., Baradat, M., Gueraud, F., & Huc, L. (2013). Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death & Differentiation, 20(12), 1615-1630.
De Gruijl, F. R., & Rebel, H. (2008). Early events in UV carcinogenesis—DNA damage, target cells and mutant p53 foci. Photochemistry and photobiology, 84(2), 382-387.
Dhanda, A. S., Warren, K. E., Chiu, R. H., & Guttman, J. A. (2018). Cyclophilin A controls Salmonella internalization levels and is present at E. coli actin‐rich pedestals. The Anatomical Record, 301(12), 2086-2094.
Donglikar, M. M., & Deore, S. L. (2016). Sunscreens: A review. Pharmacognosy Journals, 8(3).
Dusselier, M., Mascal, M., & Sels, B. F. (2014). Top chemical opportunities from carbohydrate biomass: A chemist’s view of the biorefinery. In Selective Catalysis for Renewable Feedstocks and Chemicals (pp. 1-40). Springer.
Edwards, M. J., Richardson, D. J., Paquete, C. M., & Clarke, T. A. (2019). Role of multiheme cytochromes involved in extracellular anaerobic respiration in bacteria. Protein Science.
Edwards, M. J., Richardson, D. J., Paquete, C. M., & Clarke, T. A. (2020). Role of multiheme cytochromes involved in extracellular anaerobic respiration in bacteria. Protein Science, 29(4), 830-842.
El-Abaseri, T. B., Putta, S., & Hansen, L. A. (2006). Ultraviolet irradiation induces keratinocyte proliferation and epidermal hyperplasia through the activation of the epidermal growth factor receptor. Carcinogenesis, 27(2), 225-231.
Finke, N., Vandieken, V., & Jørgensen, B. B. (2007). Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiology Ecology, 59(1), 10-22.
Fiume, M. M., Heldreth, B. A., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D. C., Marks Jr, J. G., Shank, R. C., & Slaga, T. J. (2015). Safety Assessment of alkyl esters as used in cosmetics. International journal of toxicology, 34(2_suppl), 5S-69S.
Fornero, J. J., Rosenbaum, M., & Angenent, L. T. (2010). Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 22(7‐8), 832-843.
Franza, T., Delavenne, E., Derré‐Bobillot, A., Juillard, V., Boulay, M., Demey, E., Vinh, J., Lamberet, G., & Gaudu, P. (2016). A partial metabolic pathway enables group b streptococcus to overcome quinone deficiency in a host bacterial community. Molecular microbiology, 102(1), 81-91.
Ginsberg, C., Brown, S., & Walker, S. (2008). Bacterial cell wall components. Glycoscience, ISBN 978-3-540-36154-1. Springer-Verlag Berlin Heidelberg, 2008, p. 1535, 1535.
Godic, A., Poljšak, B., Adamic, M., & Dahmane, R. (2014). The role of antioxidants in skin cancer prevention and treatment. Oxidative medicine and cellular longevity, 2014.
Hai, F. I., Yamamoto, K., & Fukushi, K. (2007). Hybrid treatment systems for dye wastewater. Critical Reviews in Environmental Science and Technology, 37(4), 315-377.
Halliday, G. M., & Lyons, J. G. (2008). Inflammatory doses of UV may not be necessary for skin carcinogenesis. Photochemistry and photobiology, 84(2), 272-283.
Halliday, G. M., & Rana, S. (2008). Waveband and dose dependency of sunlight‐induced immunomodulation and cellular changes. Photochemistry and photobiology, 84(1), 35-46.
Halliwell, B. (1993). The chemistry of free radicals. Toxicology and industrial health, 9(1-2), 1-21.
Harned, J., Grimes, A., & McGahan, M. (2003). The Effect of UVB Irradiation on Ferritin Subunit Synthesis, Ferritin Assembly and Fe Metabolism in Cultured Canine Lens Epithelial Cells¶. Photochemistry and photobiology, 77(4), 440-445.
Hederstedt, L., Gorton, L., & Pankratova, G. (2020). Two routes for extracellular electron transfer in Enterococcus faecalis. Journal of Bacteriology.
Hiraishi, A. (1988). High-performance liquid chromatographic analysis of demethylmenaquinone and menaquinone mixtures from bacteria. J Appl Bacteriol, 64(2), 103-105. https://doi.org/10.1111/j.1365-2672.1988.tb02728.x
Hiraishi, A. (1988). High‐performance liquid chromatographic analysis of demethylmenaquinone and menaquinone mixtures from bacteria. Journal of applied bacteriology, 64(2), 103-105.
Huang, W., Guo, H.-L., Deng, X., Zhu, T.-T., Xiong, J.-F., Xu, Y.-H., & Xu, Y. (2017). Short-chain fatty acids inhibit oxidative stress and inflammation in mesangial cells induced by high glucose and lipopolysaccharide. Experimental and Clinical Endocrinology & Diabetes, 125(02), 98-105.
Jiang, Y., Xu, Y., Yang, Q., Chen, Y., Zhu, S., & Shen, S. (2014). Power generation using polyaniline/multi‐walled carbon nanotubes as an alternative cathode catalyst in microbial fuel cells. International journal of energy research, 38(11), 1416-1423.
Jurkiewicz, B. A., & Buettner, G. R. (1994). Ultraviolet light-induced free radical formation in skin: an electron paramagnetic resonance study. Photochem Photobiol, 59(1), 1-4. https://doi.org/10.1111/j.1751-1097.1994.tb04993.x
Kao, M. S., Huang, S., Chang, W. L., Hsieh, M. F., Huang, C. J., Gallo, R. L., & Huang, C. M. (2017). Microbiome precision editing: Using PEG as a selective fermentation initiator against methicillin‐resistant Staphylococcus aureus. Biotechnology journal, 12(4).
Karkucinska-Wieckowska, A., Lebiedzinska, M., Jurkiewicz, E., Pajdowska, M., Trubicka, J., Szymanska-Debinska, T., Suski, J., Pinton, P., Duszynski, J., & Pronicki, M. (2011). Increased reactive oxygen species (ROS) production and low catalase level in fibroblasts of a girl with MEGDEL association (Leigh syndrome, deafness, 3-methylglutaconic aciduria). Folia Neuropathol, 49(01), 56-63.
Karkucinska-Wieckowska, A., Lebiedzinska, M., Jurkiewicz, E., Pajdowska, M., Trubicka, J., Szymanska-Debinska, T., Suski, J., Pinton, P., Duszynski, J., Pronicki, M., Wieckowski, M. R., & Pronicka, E. (2011). Increased reactive oxygen species (ROS) production and low catalase level in fibroblasts of a girl with MEGDEL association (Leigh syndrome, deafness, 3-methylglutaconic aciduria). Folia Neuropathol, 49(1), 56-63.
Kehrer, J. P. (1993). Free radicals as mediators of tissue injury and disease. Critical reviews in toxicology, 23(1), 21-48.
Keshari, S., Balasubramaniam, A., Myagmardoloonjin, B., Herr, D. R., Negari, I. P., & Huang, C.-M. (2019). Butyric Acid from Probiotic Staphylococcus epidermidis in the Skin Microbiome Down-Regulates the Ultraviolet-Induced Pro-Inflammatory IL-6 Cytokine via Short-Chain Fatty Acid Receptor. International journal of molecular sciences, 20(18), 4477.
Kim, M. Y., Kim, C., Ainala, S. K., Bae, H., Jeon, B.-H., Park, S., & Kim, J. R. (2019). Metabolic shift of Klebsiella pneumoniae L17 by electrode-based electron transfer using glycerol in a microbial fuel cell. Bioelectrochemistry, 125, 1-7.
Kloos, W. E., & Musselwhite, M. S. (1975). Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl. Environ. Microbiol., 30(3), 381-395.
Kolarsick, P. A., Kolarsick, M. A., & Goodwin, C. (2011). Anatomy and physiology of the skin. Journal of the Dermatology Nurses′ Association, 3(4), 203-213.
Kord, M., Ardebili, A., Jamalan, M., Jahanbakhsh, R., Behnampour, N., & Ghaemi, E. A. (2018). Evaluation of Biofilm Formation and Presence of Ica Genes in Staphylococcus epidermidis Clinical Isolates. Osong public health and research perspectives, 9(4), 160.
Kumar, R., Singh, L., Wahid, Z. A., & Din, M. F. M. (2015). Exoelectrogens in microbial fuel cells toward bioelectricity generation: a review. International Journal of Energy Research, 39(8), 1048-1067.
Kumar, R., Singh, L., & Zularisam, A. (2016). Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renewable and Sustainable Energy Reviews, 56, 1322-1336.
Kumar, R., Singh, L., Zularisam, A., & Hai, F. I. (2018). Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances. International Journal of Energy Research, 42(2), 369-394.
Łastowiecka-Moras, E., Bugajska, J., & Młynarczyk, B. (2014). Occupational exposure to natural UV radiation and premature skin ageing. International Journal of Occupational Safety and Ergonomics, 20(4), 639-645.
Lazzarino, G., Amorini, A. M., Signoretti, S., Musumeci, G., Lazzarino, G., Caruso, G., Pastore, F. S., Di Pietro, V., Tavazzi, B., & Belli, A. (2019). Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle Enzymes Are Sensitive Targets of Traumatic Brain Injury Induced Metabolic Derangement. International journal of molecular sciences, 20(22), 5774.
Lee, S. P., Hwang, Y. S., Kim, Y. J., Kwon, K.-S., Kim, H. J., Kim, K., & Chae, H. Z. (2001). Cyclophilin a binds to peroxiredoxins and activates its peroxidase activity. Journal of Biological Chemistry, 276(32), 29826-29832.
Liang, P., Wang, H., Xia, X., Huang, X., Mo, Y., Cao, X., & Fan, M. (2011). Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells. Biosensors and Bioelectronics, 26(6), 3000-3004.
Liebel, F., Kaur, S., Ruvolo, E., Kollias, N., & Southall, M. D. (2012). Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. Journal of Investigative Dermatology, 132(7), 1901-1907.
Light, S. H., Méheust, R., Ferrell, J. L., Cho, J., Deng, D., Agostoni, M., Iavarone, A. T., Banfield, J. F., D′Orazio, S. E. F., & Portnoy, D. A. (2019). Extracellular electron transfer powers flavinylated extracellular reductases in Gram-positive bacteria. Proc Natl Acad Sci U S A, 116(52), 26892-26899. https://doi.org/10.1073/pnas.1915678116
Light, S. H., Su, L., Rivera-Lugo, R., Cornejo, J. A., Louie, A., Iavarone, A. T., Ajo-Franklin, C. M., & Portnoy, D. A. (2018). A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature, 562(7725), 140-144.
Liu, H., Cheng, S., & Logan, B. E. (2005). Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental science & technology, 39(2), 658-662.
Liu, H., & Fang, H. (2003). Hydrogen production from wastewater by acidogenic granular sludge. Water science and technology, 47(1), 153-158.
Liu, X., Wang, S., Xu, A., Zhang, L., Liu, H., & Ma, L. Z. (2019). Biological synthesis of high-conductive pili in aerobic bacterium Pseudomonas aeruginosa. Applied microbiology and biotechnology, 103(3), 1535-1544.
Lovley, D. R. (2012). Electromicrobiology. Annual review of microbiology, 66, 391-409.
Meghji, S., Crean, S., Nair, S., Wilson, M., Poole, S., Harris, M., & Henderson, B. (1997). Staphylococcus epidermidis produces a cell-associated proteinaceous fraction which causes bone resorption by a prostanoid-independent mechanism: relevance to the treatment of infected orthopaedic implants. British journal of rheumatology, 36(9), 957-963.
Melnikova, V. O., & Ananthaswamy, H. N. (2005). Cellular and molecular events leading to the development of skin cancer. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571(1-2), 91-106.
Melnikova, V. O., Pacifico, A., Chimenti, S., Peris, K., & Ananthaswamy, H. N. (2005). Fate of UVB-induced p53 mutations in SKH-hr1 mouse skin after discontinuation of irradiation: relationship to skin cancer development. Oncogene, 24(47), 7055-7063.
Naidoo, K., & Birch-Machin, M. A. (2017). Oxidative stress and ageing: the influence of environmental pollution, sunlight and diet on skin. Cosmetics, 4(1), 4.
Nakatani, Y., Shimaki, Y., Dutta, D., Muench, S. P., Ireton, K., Cook, G. M., & Jeuken, L. J. (2019). Unprecedented properties of phenothiazines unraveled by a NDH-2 bioelectrochemical assay platform. J Am Chem Soc, 142, 1311-1320.
Nakatani, Y., Shimaki, Y., Dutta, D., Muench, S. P., Ireton, K., Cook, G. M., & Jeuken, L. J. C. (2020). Unprecedented Properties of Phenothiazines Unraveled by a NDH-2 Bioelectrochemical Assay Platform. Journal of the American Chemical Society, 142(3), 1311-1320. https://doi.org/10.1021/jacs.9b10254
Nakatsuji, T., Chen, T. H., Butcher, A. M., Trzoss, L. L., Nam, S.-J., Shirakawa, K. T., Zhou, W., Oh, J., Otto, M., & Fenical, W. (2018). A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Science Advances, 4(2), eaao4502.
Nakatsuji, T., Chen, T. H., Narala, S., Chun, K. A., Two, A. M., Yun, T., Shafiq, F., Kotol, P. F., Bouslimani, A., & Melnik, A. V. (2017). Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Science translational medicine, 9(378), eaah4680.
Naoumov, N. V. (2014). Cyclophilin inhibition as potential therapy for liver diseases. Journal of hepatology, 61(5), 1166-1174.
Narendhirakannan, R., & Hannah, M. A. C. (2013). Oxidative stress and skin cancer: an overview. Indian Journal of Clinical Biochemistry, 28(2), 110-115.
Nevin, K. P., Richter, H., Covalla, S., Johnson, J., Woodard, T., Orloff, A., Jia, H., Zhang, M., & Lovley, D. (2008). Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environmental microbiology, 10(10), 2505-2514.
Nichols, J. A., & Katiyar, S. K. (2010). Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Archives of dermatological research, 302(2), 71-83.
Oschman, J. L. (2007). Can electrons act as antioxidants? A review and commentary. The Journal of Alternative and Complementary Medicine, 13(9), 955-967.
Pankratova, G., Hederstedt, L., & Gorton, L. (2019). Extracellular electron transfer features of Gram-positive bacteria. Analytica chimica acta, 1076, 32-47.
Pankratova, G., Leech, D. n., Gorton, L., & Hederstedt, L. (2018). Extracellular electron transfer by the Gram-positive bacterium Enterococcus faecalis. Biochemistry, 57(30), 4597-4603.
Pant, D., Van Bogaert, G., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource technology, 101(6), 1533-1543.
Peak, M., & Peak, J. (1980). Protection by glycerol against the biological actions of near-ultraviolet light. Radiation research, 83(3), 553-558.
Proksch, E., Brandner, J. M., & Jensen, J. M. (2008). The skin: an indispensable barrier. Experimental dermatology, 17(12), 1063-1072.
Ramachandran, S., Vinitha, A., & Kartha, C. C. (2016). Cyclophilin A enhances macrophage differentiation and lipid uptake in high glucose conditions: a cellular mechanism for accelerated macro vascular disease in diabetes mellitus. Cardiovascular diabetology, 15(1), 152.
Rastogi, R. P., Kumar, A., Tyagi, M. B., & Sinha, R. P. (2010). Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. Journal of nucleic acids, 2010.
Rastogi, R. P., Richa, Kumar, A., Tyagi, M. B., & Sinha, R. P. (2010). Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids, 2010, 592980. https://doi.org/10.4061/2010/592980
Roset, M. S., Fernández, L. G., DelVecchio, V. G., & Briones, G. (2013). Intracellularly induced cyclophilins play an important role in stress adaptation and virulence of Brucella abortus. Infection and immunity, 81(2), 521-530.
Scharlau, D., Borowicki, A., Habermann, N., Hofmann, T., Klenow, S., Miene, C., Munjal, U., Stein, K., & Glei, M. (2009). Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutation Research/Reviews in Mutation Research, 682(1), 39-53.
Schwarz, T. (2008). 25 years of UV‐induced immunosuppression mediated by T cells—from disregarded T suppressor cells to highly respected regulatory T cells. Photochemistry and photobiology, 84(1), 10-18.
Seal, S., Polley, S., & Sau, S. (2019). A staphylococcal cyclophilin carries a single domain and unfolds via the formation of an intermediate that preserves cyclosporin A binding activity. PloS one, 14(3).
Shi, L., Dong, H., Reguera, G., Beyenal, H., Lu, A., Liu, J., Yu, H.-Q., & Fredrickson, J. K. (2016). Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology, 14(10), 651.
Sorokin, D. Y., Detkova, E., & Muyzer, G. (2010). Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov. Extremophiles, 14(1), 71-77.
Stenesh, J. (1998). The Citric Acid Cycle. In Biochemistry (pp. 273-291). Springer.
Stojiljković, D., Pavlović, D., & Arsić, I. (2014). Oxidative stress, skin aging and antioxidant therapy/oksidacioni stres, starenje kože i antioksidaciona terapija. Acta Facultatis Medicae Naissensis, 31(4), 207-217.
Trenam, C. W., Blake, D. R., & Morris, C. J. (1992). Skin inflammation: reactive oxygen species and the role of iron. Journal of investigative dermatology, 99(6), 675-682.
Wang, W., Du, Y., Yang, S., Du, X., Li, M., Lin, B., Zhou, J., Lin, L., Song, Y., & Li, J. (2019). Bacterial Extracellular Electron Transfer Occurs in Mammalian Gut. Analytical chemistry, 91(19), 12138-12141.
Wang, Y., Kao, M.-S., Yu, J., Huang, S., Marito, S., Gallo, R. L., & Huang, C.-M. (2016). A precision microbiome approach using sucrose for selective augmentation of Staphylococcus epidermidis fermentation against Propionibacterium acnes. International journal of molecular sciences, 17(11), 1870.
Wang, Y., Kuo, S., Shu, M., Yu, J., Huang, S., Dai, A., Two, A., Gallo, R. L., & Huang, C.-M. (2014). Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Applied microbiology and biotechnology, 98(1), 411-424.
Wegh, C. A., Geerlings, S. Y., Knol, J., Roeselers, G., & Belzer, C. (2019). Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. International journal of molecular sciences, 20(19), 4673.
Wolfe, A. J. (2005). The acetate switch. Microbiol. Mol. Biol. Rev., 69(1), 12-50.
Wu, Y., Zhang, X., Li, S., Lv, X., Cheng, Y., & Wang, X. (2013). Microbial biofuel cell operating effectively through carbon nanotube blended with gold–titania nanocomposites modified electrode. Electrochimica Acta, 109, 328-332.
Wu, Z., Wang, J., Liu, J., Wang, Y., Bi, C., & Zhang, X. (2019). Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO 2. Microbial cell factories, 18(1), 15.
Xayarath, B., Alonzo III, F., & Freitag, N. E. (2015). Identification of a peptide-pheromone that enhances Listeria monocytogenes escape from host cell vacuoles. PLoS pathogens, 11(3).
Yong, X.-Y., Feng, J., Chen, Y.-L., Shi, D.-Y., Xu, Y.-S., Zhou, J., Wang, S.-Y., Xu, L., Yong, Y.-C., & Sun, Y.-M. (2014). Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell. Biosensors and Bioelectronics, 56, 19-25.
Yoshizawa, T., Miyahara, M., Kouzuma, A., & Watanabe, K. (2014). Conversion of activated-sludge reactors to microbial fuel cells for wastewater treatment coupled to electricity generation. Journal of bioscience and bioengineering, 118(5), 533-539.
Yu, Y.-Y., Guo, C. X., Yong, Y.-C., Li, C. M., & Song, H. (2015). Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode. Chemosphere, 140, 26-33.
Zhang, Y. Q., Ren, S. X., Li, H. L., Wang, Y. X., Fu, G., Yang, J., Qin, Z. Q., Miao, Y. G., Wang, W. Y., & Chen, R. S. (2003). Genome‐based analysis of virulence genes in a non‐biofilm‐forming Staphylococcus epidermidis strain (ATCC 12228). Molecular microbiology, 49(6), 1577-1593.
指導教授 黃俊銘(Chun-Ming Huang) 審核日期 2020-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明