博碩士論文 107827606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.239.56.184
姓名 陳氏艷庄(Tran Thi Diem Trang)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)
(Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine))
相關論文
★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在熱塑性聚氨酯(TPU)生物材料表面發現了一系列嚴重問題,例如
由於疏水性表面引發凝血酶和發炎反應. 因此,將表面修飾為親水性, 進而阻止了蛋白質,血液和細胞的粘附。光接枝法是表面改性的有效方法之一,其中光引髮劑二苯甲酮(BP)被廣泛使用. 然而,光反應單體在乙醇溶劑中的高溶解度使單體從表面被釋放至溶劑中。結果,由於弱的錨固性能,有時會影響預處理的效率。在這項研究中,我們發現丙烯酸苯甲酰苯基酯(BPA)的共聚物在醇類中的溶解度低,可以克服二苯甲酮(BP)的釋放問題。在這項研究中,我們合成了由 4-丙烯酰氧基二苯甲酮(BPA) 單體作為光起始劑的聚(4-丙烯酰氧基二苯甲酮-甲基丙烯酸丁酯) p(BPA-BMA)除此之外, 合成了 p(MPC-DMA), 並起了官能團的作用。 2-甲基丙烯酰氧基乙基磷酰膽鹼(MPC)由於其優異的生物相容性,超強的親水性和出色的抗沾黏特性而被廣泛應用。 使用 1H NMR 確認 p(BPA-BMA)和 p(MPCDMA)聚合物之結構。 利用 ATR-FTIR, XPS 光譜證實透過使用聚合物 p(BPA-BMA)作為光起始劑的光接枝反應在 TPU 表面上的 p(MPC-DMA)附著。通過動摩擦係數(µK),水表面接觸角(WSCA)證明了有效改善TPU 表面親水性的能力. 通過所有結果, 顯示了 BPA 共聚物通過紫外線照射接枝兩性離子聚合物的能力,也克服了這些單體的缺點. 將來, BPA 共聚物可廣泛應用於各種醫療器械.
摘要(英) A series of serious problems on the surface of thermoplastic polyurethane (TPU) biomaterials were found such as thrombin, inflammation response, and device failure due to the hydrophobicity surface. Therefore, modification of surfaces becomes hydrophilicity, which prevents adhesion of proteins, blood, and cells. Photo-grafting method is one of the efficient methods in surface modification, in which benzophenone (BP) a photo-initiator is used widely. However, the high solubility in alcohol solvents of the photo-reaction monomers causes the monomers are being released out of the surface in alcohol solvents. As a result of this, the efficiency of the pretreatment is occasionally affected due to weak anchoring property. In this study, we found that co-polymers of benzoylphenyl acrylate (BPA) had possessed low solubility in alcohols, which can overcome the releasing problem of benzophenone (BP). In this study, we
synthesized poly(4-benzoylphenyl acrylate-co-butyl methacrylate) P(BPA-BMA) that based a photo-initiator monomer was 4-benzoylphenyl acrylate (BPA).Besides that, poly(2-methacryloyloxyethyl phosphorylcholine-co-dodecyl
methacrylate) P(MPC-DMA) was synthesized and played a role as the function group. 2-methacryloyloxyethyl phosphorylcholine (MPC) has been widely applied due to its excellent biocompatibility, super hydrophilic properties, and excellent anti-biofouling properties. P(BPA-BMA) and P(MPC-DMA) polymer were characterized by 1H NMR. P(MC-DMA) attachment on the TPU surface by
photo-grafting reaction using photo-initiator polymer P(BPA-BMA) was confirmed by ATR-FTIR, XPS spectrum. Through the dynamic friction coefficient (µK) results, water surface contact angle (WSCA) demonstrated the ability to improve the hydrophilicity property of surface TPU efficiently. Moreover, the percentage of the bacterial and protein absorption on the surface was prevented more significantly than the unmodified sample. Through all results, the copolymer of BPA showed the ability to grafting zwitterionic polymers through UV
irradiation, also overcome these monomer drawbacks. BPA copolymer may widely be applied to various medical devices in the future.
關鍵字(中) ★ 光接枝反應
★ 兩性離子聚合物
★ 光引髮劑聚合物
★ 2-甲基丙烯酰 氧基乙基磷酰膽鹼(MPC)
★ 丙烯酸 4-苯甲酯(BPA)
★ 醫療塗料
★ 非特 異性吸附
★ 熱塑性聚氨酯
關鍵字(英) ★ photo-grafting reaction
★ zwitterionic polymer
★ photo-initiator polymer
★ 2-methacryloyloxyethyl phosphorylcholine (MPC)
★ 4-benzophenyl acrylate (BPA)
★ medical coatings
★ non-specific adsorption
★ thermoplastic polyurethane
論文目次 Chinese Abstract ....................................................................................................i
Abstract................................................................................................................ iii
List of Abbreviations ........................................................................................ xiii
CHAPTER 1: Introduction..................................................................................1
1.1 Property of Thermoplastic Polyurethane (TPU) ..........................................1
1.2 Device-Associated Infection (DIA)..............................................................2
1.2.1 Biofilm formation .............................................................................3
1.2.2 Blood coagulation cascade ...............................................................4
1.3 Methods modification properties surface.....................................................5
1.4 Disadvantage of using photo-initiator monomer Benzophenone.................7
1.5 Potential copolymers of Benzophenone acrylate (BPA)..............................7
1.6 Effect of oxygen on photoinduced polymerization ......................................9
1.7 Antifouling materials..................................................................................11
1.7.1 Poly(ethylene glycol) (PEG) ..........................................................11
1.7.2 Polyvinylpyrrolidone (PVP) ...........................................................12
1.7.3 Zwitterionic polymers.....................................................................13
1.7.3.1 Sulfobetaine (SB)................................................................14
1.7.3.2 Carboxybetaine (CB).........................................................15
1.7.3.3 Phosphorylcholine (PC)......................................................16
1.8 Commercial products of hydrophilic coating for medical devices ............17
CHAPTER 2: Research Objective ....................................................................18
CHAPTER 3: Materials and Methods..............................................................20vi
3.1 Lists of Chemical and laboratory equipment name....................................20
3.1.1 List of Chemical name....................................................................20
3.1.2 Lists of laboratory equipment name ...............................................21
3.2 Preparation of materials..............................................................................21
3.2.1 Synthesis Poly(2-methacryloyloxyethyl phosphorylcholine-cododecyl methacrylate), P(MPC-DMA)....................................................21
3.2.2 Synthesis Poly(4-benzoyphenyl acrylate-co-butyl methacrylate),
P(BPA-BMA). .........................................................................................22
3.2.3 Prepare the TPU substrate. .............................................................22
3.2.4 LB Agar plate. ................................................................................22
3.3 Methods ......................................................................................................22
3.3.1 Liquid State Nuclear Magnetic Resonance Spectrometer (1H NMR)
..................................................................................................................22
3.3.2 Solubility of P(BPA-BMA) ............................................................22
3.3.3 Calibration plot of P(BPA-BMA) and BPA monomer in ethanol..23
3.3.4 Investigation of P(BPA-BMA) diffusion out the catheter surface and
4-benzoylphenyl acrylate (BPA) monomer in ethanol and PBS. ............23
3.3.5 Modificate TPU catheter by Poly(2-methylacryloyloxyethyl
phosphorylcholine-co-dodecyl methyacrylate), P(MPC-DMA). ............23
3.3.6 Attenuated total reflectance-Fourier transform infrared spectra
(ATR-FTIR) identification. .....................................................................24
3.3.7 Transmission Electron Microscope (TEM). ...................................25
3.3.8 X-ray photoelectron spectroscopy (XPS).......................................25
3.3.9 Ultraviolet-visible spectroscopy (UV-Vis).....................................25
3.3.10 Friction measurement ...................................................................25vii
3.3.11 Water contact angle measurement (Contact angle meter)............25
3.3.12 Protein adsorption test ..................................................................26
3.3.13 Bacterial adsorption test ...............................................................26
CHAPTER 4: Results and Discussions.............................................................28
4.1 1H NMR spectrum of P(BPA-BMA) and P(MPC-DMA)..........................28
4.1.1 1H NMR spectrum of Poly(4-benzolphenyl acrylate -co-butyl methyl
acrylate), P(BPA-BMA). .........................................................................28
4.1.2 1H NMR spectrum of Poly(2-methacryloyloxyethyl
phosphorylcholine-co-dodecyl methacrylate), P(MPC-DMA). ..............29
4.2 Solubility, morphology, and diffusion of P(BPA-BMA) out the catheter
surface ..............................................................................................30
4.2.1 Solubility of P(BPA-BMA) ............................................................30
4.2.2 Investigation of diffusion of P(BPA-BMA) out the catheter surface
and comparison of 4-benzoylphenyl acrylate (BPA) monomer in ethanol
and PBS. ..................................................................................................32
4.2.3 ATR-FTIR spectrum of the catheter surface before and after immerse
40min in ethanol. .....................................................................................38
4.2.4 Morphology of P(BPA-BMA)........................................................40
4.3 The influence of radiation wavelength on the efficiency of Poly(BPA-BMA)
and the lubrication of the catheter surface. ......................................41
4.4 Characterization of pretreatment and coating layer ...................................44
4.4.1 Analyzed polymers on the surface after pretreatment and coating by
ATR-FTIR ...............................................................................................44
4.4.1 Analyzed polymers on the surface after coating by XPS ...............48
4.5 Hydrophilic properties of coating layer......................................................49viii
4.5.1 Contact angle measurement............................................................49
4.5.2 Lubricity and stability of the coating layer.....................................50
4.6 Anti-fouling test .........................................................................................51
4.6.1 Protein adhesion test.......................................................................51
4.6.2 Bacterial adhesion test ....................................................................52
4.7 Investigation of potential hydrophilic with different ratio P(MPC-DMA),
MD37. ..............................................................................................54
4.7.1 Contact angle measurement............................................................55
4.7.2 Lubricity and stability of the coating layer MPD55 and MDP37 ..56
4.7.3 Anti-fouling test (Protein and bacterial test) ..................................57
CHAPTER 5: Conclusions.................................................................................60
CHAPTER 6: Future perspectives...................................................................61
Bibliographies......................................................................................................62
參考文獻 [1] J. O. Akindoyo, M. D. H. Beg, S. Ghazali, M. R. Islam, N. Jeyaratnam, and A. R. Yuvaraj,
“Polyurethane types, synthesis and applications-a review,” RSC Adv., vol. 6, no. 115, pp.
114453–114482, 2016, doi: 10.1039/c6ra14525f.
[2] N. R. Nardo, “End Use Applications for Thermoplastic Polyurethane Elastomers,” J.
Elastomers Plast., vol. 19, no. 1, pp. 59–76, 1987, doi: 10.1177/009524438701900106.
[3] S. P. Nikam, P. Chen, K. Nettleton, Y. H. Hsu, and M. L. Becker, “Zwitterion SurfaceFunctionalized Thermoplastic Polyurethane for Antifouling Catheter Applications,”
Biomacromolecules, vol. 21, no. 7, pp. 2714–2725, 2020, doi:
10.1021/acs.biomac.0c00456.
[4] A. Burke and N. Hasirci, “Polyurethanes in biomedical applications,” Adv. Exp. Med.
Biol., vol. 553, pp. 83–101, 2004, doi: 10.1007/978-0-306-48584-8_7.
[5] J. Joseph, R. M. Patel, A. Wenham, and J. R. Smith, “Biomedical applications of
polyurethane materials and coatings,” Trans. Inst. Met. Finish., vol. 96, no. 3, pp. 121–
129, 2018, doi: 10.1080/00202967.2018.1450209.
[6] S. Saint et al., “A Program to Prevent Catheter-Associated Urinary Tract Infection in
Acute Care,” N. Engl. J. Med., vol. 374, no. 22, pp. 2111–2119, 2016, doi:
10.1056/nejmoa1504906.
[7] H. Shah, W. Bosch, W. C. Hellinger, and K. M. Thompson, “Intravascular CatheterRelated Bloodstream Infection,” The Neurohospitalist, vol. 3, no. 3, pp. 144–151, 2013,
doi: 10.1177/1941874413476043.
[8] M. Barbara W. Trautner, MD; Rabih O. Darouiche, “Catheter-associated infections:
pathogenesis affects prevention,” Arch. Intern. Med, vol. 164, pp. 842–850, 2004.
[9] R. O. Darouiche, “Device-associated infections: A macroproblem that starts with
microadherence,” Clin. Infect. Dis., vol. 33, no. 9, pp. 1567–1572, 2001, doi:
10.1086/323130.
[10] C. A. Umscheid, M. D. Mitchell, J. A. Doshi, R. Agarwal, K. Williams, and P. J. Brennan,
“Estimating the Proportion of Healthcare-Associated Infections That Are Reasonably
Preventable and the Related Mortality and Costs,” Infect. Control Hosp. Epidemiol., vol.
32, no. 2, pp. 101–114, 2011, doi: 10.1086/657912.63
[11] M. Crouzet et al., “Exploring early steps in biofilm formation: Set-up of an experimental
system for molecular studies,” BMC Microbiol., vol. 14, no. 1, pp. 1–12, 2014, doi:
10.1186/s12866-014-0253-z.
[12] R. M. Donlan, “Biofilm formation: A clinically relevant microbiological process,” Clin.
Infect. Dis., vol. 33, no. 8, pp. 1387–1392, 2001, doi: 10.1086/322972.
[13] P. A. Cadieux, G. R. Wignall, R. Carriveau, and J. D. Denstedt, “Implications of biofilm
formation on urological devices,” AIP Conf. Proc., vol. 1049, pp. 147–163, 2008, doi:
10.1063/1.2998011.
[14] P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, “Biofilms as complex
differentiated communities,” Annu. Rev. Microbiol., vol. 56, pp. 187–209, 2002, doi:
10.1146/annurev.micro.56.012302.160705.
[15] H. P. Felgueiras, J. C. Antunes, M. C. L. Martins, and M. A. Barbosa, Fundamentals of
protein and cell interactions in biomaterials. Elsevier Ltd., 2018.
[16] E. J. Brisbois, “Novel Nitric Oxide (NO)-Releasing Polymers and their Biomedical
Applications,” Univ. Michigan, 2014.
[17] B. K. D. Ngo and M. A. Grunlan, “Protein Resistant Polymeric Biomaterials,” ACS Macro
Lett., vol. 6, no. 9, pp. 992–1000, 2017, doi: 10.1021/acsmacrolett.7b00448.
[18] S. Minko, “Grafting on solid surfaces: Grafting to and grafting from methods,” Polym.
Surfaces Interfaces Charact. Modif. Appl., pp. 215–234, 2008, doi: 10.1007/978-3-540-
73865-7_11.
[19] L. Y. Yu, B. Zhu, X. Cai, Y. W. Wang, R. H. Han, and Y. W. Li, “Review of polymer
surface modification method,” Mater. Sci. Forum, vol. 852, pp. 626–631, 2016, doi:
10.4028/www.scientific.net/MSF.852.626.
[20] H. Ma, R. H. Davis, and C. N. Bowman, “Novel sequential photoinduced living graft
polymerization,” Macromolecules, vol. 33, no. 2, pp. 331–335, 2000, doi:
10.1021/ma990821s.
[21] G. Ding et al., “Conjugated dyes carrying N, N-dialkylamino and ketone groups: Onecomponent visible light Norrish type II photoinitiators,” Dye. Pigment., vol. 137, pp. 456–
467, 2017, doi: 10.1016/j.dyepig.2016.10.034.
[22] M. A. Lago, A. Rodríguez-Bernaldo de Quirós, R. Sendón, J. Bustos, M. T. Nieto, and P.
Paseiro, “Photoinitiators: a food safety review,” Food Addit. Contam. - Part A Chem. Anal.
Control. Expo. Risk Assess., vol. 32, no. 5, pp. 779–798, 2015, doi:64
10.1080/19440049.2015.1014866.
[23] J. Yang et al., “Modification of polycarbonateurethane surface with poly (ethylene glycol)
monoacrylate and phosphorylcholine glyceraldehyde for anti-platelet adhesion,” Front.
Chem. Sci. Eng., vol. 8, no. 2, pp. 188–196, 2014, doi: 10.1007/s11705-014-1414-1.
[24] D. Keskin, T. Mokabbar, Y. Pei, and P. van Rijn, “The relationship between bulk silicone
and benzophenone-initiated hydrogel coating properties,” Polymers (Basel)., vol. 10, no.
5, pp. 11–13, 2018, doi: 10.3390/polym10050534.
[25] M. H. Schneider, Y. Tran, and P. Tabeling, “Benzophenone absorption and diffusion in
poly(dimethylsiloxane) and its role in graft photo-polymerization for surface
modification,” Langmuir, vol. 27, no. 3, pp. 1232–1240, 2011, doi: 10.1021/la103345k.
[26] M. C. Rhodes, J. R. Bucher, J. C. Peckham, G. E. Kissling, M. R. Hejtmancik, and R. S.
Chhabra, “Carcinogenesis studies of benzophenone in rats and mice,” Food Chem.
Toxicol., vol. 45, no. 5, pp. 843–851, 2007, doi: 10.1016/j.fct.2006.11.003.
[27] X. Lin, K. Fukazawa, and K. Ishihara, “Photoreactive Polymers Bearing a Zwitterionic
Phosphorylcholine Group for Surface Modification of Biomaterials,” ACS Appl. Mater.
Interfaces, vol. 7, no. 31, pp. 17489–17498, 2015, doi: 10.1021/acsami.5b05193.
[28] S. L. Chin et al., “Macromolecular photoinitiators enhance the hydrophilicity and lubricity
of natural rubber,” J. Appl. Polym. Sci., vol. 133, no. 37, pp. 1–10, 2016, doi:
10.1002/app.43930.
[29] P. Samyn, M. Biesalski, O. Prucker, and J. Rühe, “Confining acrylate-benzophenone
copolymers into adhesive micropads by photochemical crosslinking,” J. Photochem.
Photobiol. A Chem., vol. 377, no. March, pp. 80–91, 2019, doi:
10.1016/j.jphotochem.2019.03.040.
[30] “Photoinitiation Photopolymerization and Photocuring,” Proc. Inst. Mech. Eng. Part C J.
Mech. Eng. Sci., vol. 210, no. 2, pp. 197–198, 1996, doi:
10.1243/pime_proc_1996_210_186_02.
[31] M. D. Engelhart and L. R. Aiken, “Photoinitiators for Free Radical Cationic & Anionic
Photopolymerization 2nd Edition,” Educ. Psychol. Meas., vol. 35, no. 1, pp. 199–199,
1975, doi: 10.1177/001316447503500129.
[32] A. S. Lijing Gou, “A Photochemical Method to Eliminate Oxygen Inhibition in
Photocured Systems,” 2004.
[33] C. Belon, X. Allonas, C. Croutxé-Barghorn, and J. Lalevée, “Overcoming the oxygen65
inhibition in the photopolymerization of acrylates: A study of the beneficial effect of
triphenylphosphine,” J. Polym. Sci. Part A Polym. Chem., vol. 48, no. 11, pp. 2462–2469,
2010, doi: 10.1002/pola.24017.
[34] S. C. Ligon, B. Husár, H. Wutzel, R. Holman, and R. Liska, “Strategies to reduce oxygen
inhibition in photoinduced polymerization,” Chem. Rev., vol. 114, no. 1, pp. 577–589,
2014, doi: 10.1021/cr3005197.
[35] C. A. G. TIMOTHY J. WHITE, WILLIAM B. LIECHTY, “The Influence of N-Vinyl
Pyrrolidone on Polymerization Kinetics and Thermo-Mechanical Properties of
Crosslinked Acrylate Polymers,” J. Polym. Sci. Part A Polym. Chem., vol. 45, pp. 4062–
4073, 2007, doi: 10.1002/pola.22173.
[36] Li Peirong, “Surface Modification of Thermoplastic Polyurethane Catheter by
Photografting Zwitterionic Copolymers,” Master’s thesis, Inst. Biomed. Eng. Natl. Cent.
Univ., 2020, [Online]. Available: https://hdl.handle.net/11296/3wwg95.
[37] J. H. Lee, H. B. Lee, and J. D. Andrade, “Blood compatibility of polyethylene oxide
surfaces,” Prog. Polym. Sci., vol. 20, no. 6, pp. 1043–1079, 1995, doi: 10.1016/0079-
6700(95)00011-4.
[38] I. Francolini, I. Silvestro, V. Di Lisio, A. Martinelli, and A. Piozzi, “Synthesis,
characterization, and bacterial fouling-resistance properties of polyethylene glycol-grafted
polyurethane elastomers,” Int. J. Mol. Sci., vol. 20, no. 4, 2019, doi:
10.3390/ijms20041001.
[39] S. Lowe, N. M. O’Brien-Simpson, and L. A. Connal, “Antibiofouling polymer interfaces:
Poly(ethylene glycol) and other promising candidates,” Polym. Chem., vol. 6, no. 2, pp.
198–212, 2015, doi: 10.1039/c4py01356e.
[40] W. R. Gombotz, W. Guanghui, T. A. Horbett, and A. S. Hoffman, “Protein adsorption to
poly(ethylene oxide) surfaces,” J. Biomed. Mater. Res., vol. 25, no. 12, pp. 1547–1562,
1991, doi: 10.1002/jbm.820251211.
[41] J. L. Dalsin, L. Lin, S. Tosatti, J. Vörös, M. Textor, and P. B. Messersmith, “Protein
resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA,”
Langmuir, vol. 21, no. 2, pp. 640–646, 2005, doi: 10.1021/la048626g.
[42] X. Ding et al., “Antibacterial and antifouling catheter coatings using surface grafted PEGb-cationic polycarbonate diblock copolymers,” Biomaterials, vol. 33, no. 28, pp. 6593–
6603, 2012, doi: 10.1016/j.biomaterials.2012.06.001.
[43] B. Mizrahi et al., “Long-lasting antifouling coating from multi-armed polymer,”66
Langmuir, vol. 29, no. 32, pp. 10087–10094, 2013, doi: 10.1021/la4014575.
[44] P. Franco and I. De Marco, “The use of poly(N-vinyl pyrrolidone) in the delivery of drugs:
A review,” Polymers (Basel)., vol. 12, no. 5, pp. 18–21, 2020, doi:
10.3390/POLYM12051114.
[45] M. Kurakula and G. S. N. K. Rao, “Pharmaceutical assessment of polyvinylpyrrolidone
(PVP): As excipient from conventional to controlled delivery systems with a spotlight on
COVID-19 inhibition,” J. Drug Deliv. Sci. Technol., vol. 60, no. August, p. 102046, 2020,
doi: 10.1016/j.jddst.2020.102046.
[46] M. Teodorescu and M. Bercea, “Poly(vinylpyrrolidone) – A Versatile Polymer for
Biomedical and Beyond Medical Applications,” Polym. - Plast. Technol. Eng., vol. 54,
no. 9, pp. 923–943, 2015, doi: 10.1080/03602559.2014.979506.
[47] R. Awasthi et al., Poly(vinylpyrrolidone). Elsevier Ltd, 2018.
[48] H. Jang et al., “Thermally Crosslinked Biocompatible Hydrophilic Polyvinylpyrrolidone
Coatings on Polypropylene with Enhanced Mechanical and Adhesion Properties,”
Macromol. Res., vol. 26, no. 2, pp. 151–156, 2018, doi: 10.1007/s13233-018-6031-2.
[49] A. Kuźmińska, B. A. Butruk-Raszeja, A. Stefanowska, and T. Ciach,
“Polyvinylpyrrolidone (PVP) hydrogel coating for cylindrical polyurethane scaffolds,”
Colloids Surfaces B Biointerfaces, vol. 192, no. April, pp. 4–9, 2020, doi:
10.1016/j.colsurfb.2020.111066.
[50] P. Kanagaraj, A. Nagendran, D. Rana, T. Matsuura, S. Neelakandan, and K. Malarvizhi,
“Effects of polyvinylpyrrolidone on the permeation and fouling-resistance properties of
polyetherimide ultrafiltration membranes,” Ind. Eng. Chem. Res., vol. 54, no. 17, pp.
4832–4838, 2015, doi: 10.1021/acs.iecr.5b00432.
[51] B. Butruk, M. Trzaskowski, and T. Ciach, “Polyvinylpyrrolidone-based coatings for
polyurethanes - The effect of reagent concentration on their chosen physical properties,”
Chem. Process Eng. - Inz. Chem. i Proces., vol. 33, no. 4, pp. 563–571, 2012, doi:
10.2478/v10176-012-0046-6.
[52] M. Li, B. Zhuang, and J. Yu, “Functional Zwitterionic Polymers on Surface: Structures
and Applications,” Chem. - An Asian J., vol. 15, no. 14, pp. 2060–2075, 2020, doi:
10.1002/asia.202000547.
[53] L. D. Blackman, P. A. Gunatillake, P. Cass, and K. E. S. Locock, “An introduction to
zwitterionic polymer behavior and applications in solution and at surfaces,” Chem. Soc.
Rev., vol. 48, no. 3, pp. 757–770, 2019, doi: 10.1039/c8cs00508g.67
[54] J. B. Schlenoff, “Zwitteration: Coating surfaces with zwitterionic functionality to reduce
nonspecific adsorption,” Langmuir, vol. 30, no. 32, pp. 9625–9636, 2014, doi:
10.1021/la500057j.
[55] L. Zheng, H. S. Sundaram, Z. Wei, C. Li, and Z. Yuan, “Applications of zwitterionic
polymers,” React. Funct. Polym., vol. 118, no. March, pp. 51–61, 2017, doi:
10.1016/j.reactfunctpolym.2017.07.006.
[56] O. Azzaroni, A. A. Brown, and W. T. S. Huck, “UCST wetting transitions of
polyzwitterionic brushes driven by self-association,” Angew. Chemie - Int. Ed., vol. 45,
no. 11, pp. 1770–1774, 2006, doi: 10.1002/anie.200503264.
[57] C. Liu, J. Lee, J. Ma, and M. Elimelech, “Antifouling Thin-Film Composite Membranes
by Controlled Architecture of Zwitterionic Polymer Brush Layer,” Environ. Sci. Technol.,
vol. 51, no. 4, pp. 2161–2169, 2017, doi: 10.1021/acs.est.6b05992.
[58] S. Y. Lee, Y. Lee, P. Le Thi, D. H. Oh, and K. D. Park, “Sulfobetaine methacrylate
hydrogel-coated anti-fouling surfaces for implantable biomedical devices,” Biomater.
Res., vol. 22, no. 1, pp. 3–9, 2018, doi: 10.1186/s40824-017-0113-7.
[59] vahid salimian Rizi, “Fundamentals and applications of Zwitterionic antifouling
polymers,” Mater. Res. Express, pp. 0–12, 2019.
[60] J. Ladd, Z. Zhang, S. Chen, J. C. Hower, and S. Jiang, “Nonspecific Protein Adsorption
from Human Serum and Plasma,” Biomacromolecules, vol. 9, no. 5, pp. 1357–1361, 2008.
[61] A. Li et al., “Synthesis and in vivo pharmacokinetic evaluation of degradable shell crosslinked polymer nanoparticles with poly(carboxybetaine) versus poly(ethylene glycol)
surface-grafted coatings,” ACS Nano, vol. 6, no. 10, pp. 8970–8982, 2012, doi:
10.1021/nn303030t.
[62] W. Yang, H. Xue, L. R. Carr, J. Wang, and S. Jiang, “Zwitterionic poly(carboxybetaine)
hydrogels for glucose biosensors in complex media,” Biosens. Bioelectron., vol. 26, no. 5,
pp. 2454–2459, 2011, doi: 10.1016/j.bios.2010.10.031.
[63] Y. S. Wang, S. Yau, L. K. Chau, A. Mohamed, and C. J. Huang, “Functional Biointerfaces
Based on Mixed Zwitterionic Self-Assembled Monolayers for Biosensing Applications,”
Langmuir, vol. 35, no. 5, pp. 1652–1661, 2019, doi: 10.1021/acs.langmuir.8b01779.
[64] K. Ishihara, K. Fukumoto, Y. Iwasaki, and N. Nakabayashi, “Modification of polysulfone
with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface
characterization,” Biomaterials, vol. 20, no. 17, pp. 1545–1551, 1999, doi:
10.1016/S0142-9612(99)00052-6.68
[65] Y. Iwasaki, Y. Aiba, N. Morimoto, N. Nakabayashi, and K. Ishihara, “Semi‐
interpenetrating polymer networks composed of biocompatible phospholipid polymer and
segmented polyurethane,” J. Biomed. Mater. Res., vol. 52, no. 4, pp. 701–708, 2000, doi:
10.1002/1097-4636(20001215)52:4<701::aid-jbm15>3.3.co;2-y.
[66] H. Yumoto et al., “Anti-inflammatory and protective effects of 2-methacryloyloxyethyl
phosphorylcholine polymer on oral epithelial cells,” J. Biomed. Mater. Res. - Part A, vol.
103, no. 2, pp. 555–563, 2015, doi: 10.1002/jbm.a.35201.
[67] K. Hirota, K. Murakami, K. Nemoto, and Y. Miyake, “Coating of a surface with 2-
methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces
retention of human pathogenic microorganisms,” FEMS Microbiol. Lett., vol. 248, no. 1,
pp. 37–45, 2005, doi: 10.1016/j.femsle.2005.05.019.
[68] A. L. Lewis, Z. L. Cumming, H. H. Goreish, L. C. Kirkwood, L. A. Tolhurst, and P. W.
Stratford, “Crosslinkable coatings from phosphorylcholine-based polymers,” 2001.
[69] L. Wood, “Global Hydrophilic Coatings Market 2017-2021 With Aculon, Biocoat,
Harland Medical Systems, Hydromer & DSM Dominating - Research and Markets,” 2017.
https://www.businesswire.com/news/home/20170914005882/en/Global-HydrophilicCoatings-Market-2017-2021-With-Aculon-Biocoat-Harland-Medical-SystemsHydromer-DSM-Dominating---Research-and-Markets.
[70] “DSM ComfortCoat® hydrophilic coating enhances the capabilities of EPflex medical
guidewires.” https://www.dsm.com/biomedical/en_US/media-events/pressreleases/2012/2012-01-31-dsm-comfortcoat-hydrophilic-coating-enhances-capabilitiesepflex-medical-guidewires.html.
[71] “DSM Biomedical Extends Its Hydrophilic ComfortCoatTM Technology Platform with the
Development of a Hemocompatible Antimicrobial Coating,” 2009.
https://www.businesswire.com/news/home/20090526005729/en/DSM-BiomedicalExtends-Its-Hydrophilic-ComfortCoatTM-Technology-Platform-with-the-Developmentof-a-Hemocompatible-Antimicrobial-Coating.
[72] “Lubricent UV Hydrophilic Coating.” https://harlandmedical.com/products/materials/.
[73] “LUBRIMATRIXTM SURFACE TREATMENT FOR INTRAOCULAR LENS (IOL)
INJECTORS.” https://www.astp.com/lubrimatrix.
[74] “LUBRILASTTM LUBRICIOUS HYDROPHILIC MEDICAL COATING.”
https://www.astp.com/lubrilast.
[75] A. K. Srivastava and A. Tripathi, “Photopolymerization of n-butyl methacrylate in69
solutions initiated by diphenyl ditelluride,” Des. Monomers Polym., vol. 11, no. 1, pp. 83–
95, 2008, doi: 10.1163/156855508X292446.
[76] S. Nanjundan, C. S. Unnithan, C. S. J. Selvamalar, and A. Penlidis, “Homopolymer of 4-
benzoylphenyl methacrylate and its copolymers with glycidyl methacrylate: Synthesis,
characterization, monomer reactivity ratios and application as adhesives,” React. Funct.
Polym., vol. 62, no. 1, pp. 11–24, 2005, doi: 10.1016/j.reactfunctpolym.2004.08.006.
[77] M. Ohshio, K. Ishihara, and S. I. Yusa, “Self-association behavior of cell membraneinspired amphiphilic random copolymers in water,” Polymers (Basel)., vol. 11, no. 2,
2019, doi: 10.3390/polym11020327.
[78] M. Kumar Trivedi, “Thermal, Spectroscopic and Chromatographic Characterization of
Biofield Energy Treated Benzophenone,” Sci. J. Anal. Chem., vol. 3, no. 6, p. 109, 2015,
doi: 10.11648/j.sjac.20150306.15.
[79] R. Shanti, F. Bella, Y. S. Salim, S. Y. Chee, S. Ramesh, and K. Ramesh, “Poly(methyl
methacrylate-co-butyl acrylate-co-acrylic acid): Physico-chemical characterization and
targeted dye sensitized solar cell application,” Mater. Des., vol. 108, pp. 560–569, 2016,
doi: 10.1016/j.matdes.2016.07.021.
[80] E. R. Pike, Introduction to Soft X-Ray Spectroscopy, vol. 28, no. 3. 1960.
[81] L. Yu et al., “High-Antifouling Polymer Brush Coatings on Nonpolar Surfaces via
Adsorption-Cross-Linking Strategy,” ACS Appl. Mater. Interfaces, vol. 9, no. 51, pp.
44281–44292, 2017, doi: 10.1021/acsami.7b13515.
[82] E. K. Riga, J. S. Saar, R. Erath, M. Hechenbichler, and K. Lienkamp, “On the limits of
benzophenone as cross-linker for surface-attached polymer hydrogels,” Polymers (Basel).,
vol. 9, no. 12, Dec. 2017, doi: 10.3390/polym9120686.
[83] Q. Liu, P. Singha, H. Handa, and J. Locklin, “Covalent Grafting of Antifouling
Phosphorylcholine-Based Copolymers with Antimicrobial Nitric Oxide Releasing
Polymers to Enhance Infection-Resistant Properties of Medical Device Coatings,”
Langmuir, vol. 33, no. 45, pp. 13105–13113, 2017, doi: 10.1021/acs.langmuir.7b02970.
[84] “UV Cutoff.” https://macro.lsu.edu/HowTo/solvents/UV Cutoff.htm.
[85] X. Han, J. Chen, Z. Li, and H. Qiu, “Combustion fabrication of magnetic porous carbon
as a novel magnetic solid-phase extraction adsorbent for the determination of non-steroidal
anti-inflammatory drugs,” Anal. Chim. Acta, vol. 1078, pp. 78–89, 2019, doi:
10.1016/j.aca.2019.06.022.70
[86] M. Imtiaz et al., “Functionalized bioinspired porous carbon with graphene sheets as anode
materials for lithium-ion batteries,” J. Alloys Compd., vol. 724, pp. 296–305, 2017, doi:
10.1016/j.jallcom.2017.07.005.
[87] P. Veerakumar, T. Jeyapragasam, S. Surabhi, K. Salamalai, T. Maiyalagan, and K. C. Lin,
“Functionalized Mesoporous Carbon Nanostructures for Efficient Removal of Eriochrome
Black-T from Aqueous Solution,” J. Chem. Eng. Data, vol. 64, no. 4, pp. 1305–1321,
2019, doi: 10.1021/acs.jced.8b00878.
[88] A. S. Münch, M. Wölk, M. Malanin, K. J. Eichhorn, F. Simon, and P. Uhlmann, “Smart
functional polymer coatings for paper with anti-fouling properties,” J. Mater. Chem. B,
vol. 6, no. 5, pp. 830–843, 2018, doi: 10.1039/c7tb02886e.
[89] S. Ibrahim and S. Lotfy, “Properties of butyl acrylate polymers synthesized by radiation
and miniemulsion polymerization techniques as flexible coating for packaging materials,”
J. Vinyl Addit. Technol., no. May, pp. 1–8, 2020, doi: 10.1002/vnl.21796.
指導教授 黃俊仁 李宇翔(Chun-Jen Huang Yu-Hsiang Lee) 審核日期 2021-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明