博碩士論文 107827607 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.239.56.184
姓名 阮艷垂(Diem Thuy Nguyen)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱
(Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane)
相關論文
★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 醫療器材的表面性質是影響設備的關鍵因素之一。 實際上,體內留置的導管或醫材植入物中的潤滑度不足會直接影響每個患者的健康狀況。 疏水性表面還會引起細菌附著和蛋白質吸附,導致生物材料的的不穩定性與損壞。在這項研究中,我們合成了無規共聚物聚(2-甲基丙烯酰氧基氧乙基磷酰膽鹼(MPC)-r- 3-(三(三(三甲基甲矽烷氧基)甲矽烷基)甲基丙烯酸丙酯] TSM,透過簡單且快速的浸塗方法,改質在常用的人工植入物材料-熱塑性聚氨酯(TPU)導管,含有2-甲基丙烯酰氧基乙基磷酰膽鹼(MPC)的聚合物可以提供出色的生物相容性和對不良反應的高耐受性,TSM的疏水基團可使聚合物吸附於TPU導管表面。此外,我們也將聚乙烯吡咯烷酮(PVP)和丙烯酸4-苯甲酰基苯基酯(BPA)添加到塗料溶液中,以光誘導的方式增加塗層穩定性並形成緊密網絡。 傅立葉轉換紅外線光譜儀(ATR-FTIR)結果表明,改質後的TPU表面成功地形成了均勻的塗層,並以Profilometer Profilm3D(P3D)的結果證實,成功降低了材料表面粗糙度。在去離子水環境的摩擦試驗中, 經MPC7-TSM5, PVP, BPA(CsMT75)的塗料溶液改性後的導管, 成功降低了10倍以上的動摩擦係數。 此外,在PBS環境下,帶有CsMT75塗層的TPU管可以維持一個月的穩定性,並可以長時間的降低細菌和蛋白質在表面的貼附力。因此,用無規聚合物MPC-TSM,PVP和BPA (CsMT) 改性的TPU導管具有穩定的潤滑性質與抗非特異性吸附能力,具應用於醫材設備的巨大潛力。通過表面等離子體共振(SPR)和動態光散射(DLS)測試以及粘度和表面張力測量,研究了共聚物中單體的合適比例,溶劑和乾燥時間等表面改質的關鍵因素,探討並深刻了解表面修飾機制。然而,目前需使用5 wt%的聚合物溶液來修飾材料,為了降低聚合物使用濃度並保持相似的塗布效果,我們新發布三元共聚物(MPC-TSM-BPA)。將光交聯劑引入共聚物中時,不僅保留了防污潤滑劑穩定的表面,也降低主共聚物的修飾濃度至1 wt%。此外,在調整了成分和因素之後,除了聚合物濃度降低了5倍,UV時間也比之前的塗覆過程中的15分鐘減少了3倍至5分鐘,這歸功於MPC-TSM-BPA本身的交聯和共價鍵結。簡而言之,我們提供了一個製程簡單且具效益的表面修飾方式,未來期望應用於各項醫材設備。
摘要(英) Surface properties are one of determinants for the successful outcome of biomedical devices. Indeed, the high friction and insufficient lubrication in indwelling catheters or medical implants directly affect health situation of each patient. The hydrophobic surface also causes the bacterial attachment and protein adsorption, leading to the long-term instability then the failure of biomaterials. In this study, random copolymers, poly (2-methacryloyloxyethyl phosphorylcholine (MPC) -r- 3-(tris(trimethylsiloxy)silyl)propyl methacrylate (TSM) are synthesized to modify thermoplastic polyurethane (TPU) catheter, a common artificial implantable material in biomedical fields, via a simple and quick dip-coating method. The bio-inspired polymer containing 2-methacryloyloxyethyl phosphorylcholine (MPC) can provide the outstanding biocompatibility and the high resistance to unfavorable reactions. In addition, TSM in the copolymer with hydrophobic domain served as attachment material with a strong physical affinity to TPU surface. Poly vinylpyrrolidone (PVP) and 4-benzoylphenyl acrylate (BPA) were also added into the coating solution to induce the stability and form a tight network for surface membrane. Attenuated total reflection-Fourier-transform infrared (ATR-FTIR) results indicated the successfully uniform coating layer on TPU surface after modification with the significant decrease of roughness measured by Profilometer, Profilm3D (P3D). Regarding to a friction test in deionization water environment, the dynamic friction coefficient decreased over 10 times with the high stability during testing time after modification with a coating solution including MPC7-TSM5, PVP and BPA (CsMT75). Moreover, TPU tubes with CsMT75-coated membrane can be durable in PBS in one month. The anti-fouling assay also showed the significant decrease of bacterial and protein adhesion on the surface for the long period of time. Therefore, modifying TPU with coating solution including random copolymer MPC-TSM, PVP and BPA (CsMT) is potentially promising for stable lubricant coating material as well as repelling of nonspecific absorption on surface for the long term, then prevention of implant failure. Via Surface Plasmon Resonance (SPR) and Dynamic light scattering (DLS) testing as well as viscosity and surface tension measurement, the key factors such as suitable ratio of monomers in copolymer, solvents and drying time/condition were investigated to acknowledge deeply about the coating mechanism. Nevertheless, in this process, the polymer concentration is quite high up to (5 wt%), the aim to continuously decrease the concentration of polymer but still keep the similar coating efficiency has led to the newly released three-random copolymer (MPC-TSM-BPA). When photo crosslinkers were introduced into the copolymer, not only does the antifouling lubricant stable surface remain, but the main copolymer concentration was also down to only 1 wt%. After adjustment of components and factors, in addition to the 5-time decrease of polymer concentration, the UV time also reduced 3 times to 5 min compared to 15 min in the previous coating process thanks to the enhancement of crosslinking and formation of covalent bonds. Therefore, due to simple process and cost efficiency, the coating process can be applied to manufacturing and potentially used for various substrates of medical devices.
關鍵字(中) ★ 穩定的潤滑劑塗料
★ 非特異性吸收
★ 生物啟發共聚物
★ 浸塗工藝
關鍵字(英) ★ stable lubricant coating material
★ nonspecific absorption
★ bio-inspired copolymer
★ dip coating process
論文目次 CHINESE ABSTRACT i
ENGLISH ABSTRACT iii
TABLE OF CONTENTS v
LIST OF FIGURES vii
LIST OF ABBREVIATIONS xi
CHAPTER I. INTRODUCTION 1
1-1 Thermo plastic polyurethane (TPU) 1
1-1-1 The advances of TPU in medical aspect. 1
1-1-2 The insufficiency of anti-fouling properties 3
1-1-3 The previous studies of TPU modification 4
1-2 PVP and Zwitterionic polymers 8
1-2-1 PVP 8
1-2-2 Zwitterionic polymers 10
1-3 Polymer 2-(methacryloyloxy)ethyl phosphory lcholine (MPC) co 3-(tris(trimethylsiloxy)silyl)propyl methacrylate (TSM) (MPC-TSM) for surface modification 12
1-3-1 Characteristics of MPC and TSM monomer 12
1-3-2 Polymer MPC-TSM 15
1-4 BPA and Photo-grafting method 17
CHAPTER II. RESEARCH OBJECTIVES 19
CHAPTER III. MATERIALS AND METHODS 21
3-1 Material 21
3-1-1 Chemicals 21
3-1-2 Equipments 22
3-2 Methods 22
3-2-1 P(MPC-TSM) & P(MPC-TSM-BPA) Synthesis 22
3-2-2 Preparation pf TPU substrate 23
3-2-3 Preparation of CsMTxy-coated TPU catheter 23
3-2-4 Optimization of CsMTB coating process 23
3-2-5 Surface Characterization by Attenuated total reflection (ATR-FTIR) and Profilometer (Profilm3D) 23
3-2-6 Surface Elemental Composition Analysis by X-ray Photoelectron Spectrosopy (XPS) 24
3-2-7 Surface Wettability and Water Contact Angle 24
3-2-8 Surface Density Resonance Antifouling test (SPR) 25
3-2-9 Ultraviolet–Visible spectroscopy (UV-Vis) 25
3-2-10 Friction test 25
3-2-11 Observation and Analysis of Bacterial adhesion 26
3-2-12 Protein absorption test -Immunosorbent Assay (ELISA) 26
3-2-13 Dynamic Light Scattering (DLS) 27
3-2-14 Visosity & Surface tension 27
CHAPTER IV. RESULTS AND DISCUSSION 29
4-1 MPC-TSM 29
4-1-1 NMR Spectrum Analysis of MPC-TSM (1H NMR) 29
4-1-2 Preparation of CsMTxy-coated TPU catheter 30
4-1-3 Surface characterizations 33
4-1-4 Lubrication and Coating stability 38
4-1-5 Antifouling assays 43
4-1-6 Key factors affecting the coating process 48
4-2 MPC-TSM-BPA 57
4-2-1 NMR Spectrum Analysis of MPC-TSM (1H NMR) 57
4-2-2 Optimization of coating components for the preparation of CsMTB-coated catheter 58
4-2-3 The advancement of MTB material in increasing the stability for coating layer. 67
4-2-4. Excellent anti-fouling performance 74
CHAPTER V. CONCLUSIONS 78
CHAPTER 6. FUTURE WORKS 79
REFERENCES 80
參考文獻 [1] "Life Science Product." from http://www.nof.co.jp/english/business/life/product.html.

[2] Abbasian, M., et al. (2020). "Modification of thermoplastic polyurethane through the grafting of well-defined polystyrene and preparation of its polymer/clay nanocomposite." Polymer Bulletin 77(3): 1107-1120.

[3] Alves, P., et al. (2014). "Surface modification of polyurethane films by plasma and ultraviolet light to improve haemocompatibility for artificial heart valves." Colloids and Surfaces B: Biointerfaces 113: 25-32.

[4] Alves, P., et al. (2009). "Surface modification and characterization of thermoplastic polyurethane." European Polymer Journal 45(5): 1412-1419.

[5] Alves, P., et al. (2011). "Surface modification of a thermoplastic polyurethane by low-pressure plasma treatment to improve hydrophilicity." Journal of Applied Polymer Science 122(4): 2302-2308.

[6] Andriot, M., et al. (2009). "Silicones in Industrial Applications." Inorganic Polymers.

[7] Aroua, S., et al. (2015). "RAFT synthesis of poly(vinylpyrrolidone) amine and preparation of a water-soluble C60-PVP conjugate." Polymer Chemistry 6(14): 2616-2619.

[8] Ashmore, D., et al. (2018). "Evaluation of E. coli inhibition by plain and polymer-coated silver nanoparticles." Rev Inst Med Trop Sao Paulo 60: e18.

[9] Barros, J. A. G., et al. (2006). "Poly(N-vinyl-2-pyrrolidone) hydrogels produced by Fenton reaction." Polymer 47(26): 8414-8419.

[10] Bigot, S., et al. (2014). "Straightforward approach to graft bioactive polysaccharides onto polyurethane surfaces using an ionic liquid." Applied Surface Science 314: 301–307.

[11] Butruk-Raszeja, B., et al. (2011). "Simple method of fabrication of hydrophobic coatings for polyurethanes." Central European Journal of Chemistry 9: 1039-1045.

[12] Castell, P., et al. (2003). Photo-grafting of Benzophenone Derivatives on Polypropylene: Improvement of Adhesion of UV Curable Powder Coatings.

[13] Chen, C.-H., et al. (2008). "Influence of surface modification on the dispersion of nanoscale α‐Al2O3 particles in a thermoplastic polyurethane matrix." Journal of Applied Polymer Science 110: 237-243.

[14] Chen, D. W., et al. (2019). "Osteoblast Biocompatibility and Antibacterial Effects Using 2-Methacryloyloxyethyl Phosphocholine-Grafted Stainless-Steel Composite for Implant Applications." Nanomaterials (Basel) 9(7).

[15] Chien, H.-W., et al. (2013). "Surface conjugation of zwitterionic polymers to inhibit cell adhesion and protein adsorption." Colloids and Surfaces B: Biointerfaces 107: 152-159.

[16] Chien, H. W. and C. J. Kuo (2019). "Preparation, material properties and antimicrobial efficacy of silicone hydrogel by modulating silicone and hydrophilic monomer." J Biomater Sci Polym Ed 30(12): 1050-1067.

[17] Cooper, B. G., et al. (2018). "Friction-lowering capabilities and human subject preferences for a hydrophilic surface coating on latex substrates: implications for increasing condom usage." R Soc Open Sci 5(10): 180291.

[18] Curtis, J. and A. Colas (2013). Medical Applications of Silicones. Biomaterials Science: 1106-1116.

[19] Davis, F. J. and G. R. Mitchell (2008). Polyurethane Based Materials with Applications in Medical Devices. Bio-Materials and Prototyping Applications in Medicine. P. Bártolo and B. Bidanda. Boston, MA, Springer US: 27-48.

[20] de Avila Bockorny, G., et al. (2016). "Modifying a thermoplastic polyurethane for improving the bonding performance in an adhesive technical process." Applied Adhesion Science 4(1): 4.

[21] Dong, M., et al. (2018). "Thermoplastic polyurethane-carbon black nanocomposite coating: Fabrication and solid particle erosion resistance." Polymer 158: 381-390.

[22] Drescher, D. G., et al. (2018). "Analysis of Protein Interactions by Surface Plasmon Resonance." Adv Protein Chem Struct Biol 110: 1-30.

[23] Feneley, R. C., et al. (2015). "Urinary catheters: history, current status, adverse events and research agenda." J Med Eng Technol 39(8): 459-470.

[24] Fiorio, R., et al. (2010). "Modification of physical properties of thermoplastic polyurethane by incorporation of low-molecular-weight diurethanes." 50(12): 2321-2328.

[25] Franco, P. and I. De Marco (2020). "The Use of Poly(N-vinyl pyrrolidone) in the Delivery of Drugs: A Review." Polymers (Basel) 12(5).

[26] Gallo, J., et al. (2014). "Antibacterial surface treatment for orthopaedic implants." Int J Mol Sci 15(8): 13849-13880.

[27] He, D. (2008). Surface-selective and controllable photo-grafting for synthesis of tailored macroporous membrane adsorbers.

[28] Hirota, K., et al. (2005). "Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms." FEMS Microbiology Letters 248(1): 37-45.

[29] Hu, J., et al. (2020). "Phytic acid assisted preparation of high-performance supercapacitor electrodes from noncarbonizable polyvinylpyrrolidone." Journal of Power Sources 448: 227402.

[30] Ishihara, K. (2012). "Successful Development of Biocompatible Polymers Designed by Natures Original Inspiration." Procedia Chemistry 4: 34-38.

[31] Iwasaki, Y. and K. Ishihara (2012). "Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces." Science and technology of advanced materials 13(6): 064101-064101.

[32] Jasmee, S., et al. "Hydrophobicity performance of thermoplastic polyurethane coated with TiO2 under thermal aging effect."

[33] Kara, F., et al. (2014). "Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties." Carbohydrate Polymers 112: 39–47.

[34] Khatoon, Z., et al. (2018). "Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention." Heliyon 4(12): e01067.

[35] Koc, J., et al. (2019). "Low-Fouling Thin Hydrogel Coatings Made of Photo-Cross-Linked Polyzwitterions." Langmuir 35(5): 1552-1562.

[36] Kuroda, K., et al. (2015). "Poly(dimethylsiloxane) (PDMS) surface patterning by biocompatible photo-crosslinking block copolymers." RSC Advances 5(58): 46686-46693.

[37] Kwon, H. J., et al. (2017). "Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property." Acta Biomater 61: 169-179.

[38] Kyomoto, M., et al. (2015). "Prevention of bacterial adhesion and biofilm formation on a vitamin E-blended, cross-linked polyethylene surface with a poly(2-methacryloyloxyethyl phosphorylcholine) layer." Acta Biomater 24: 24-34.

[39] Lee, S. Y., et al. (2018). "Sulfobetaine methacrylate hydrogel-coated anti-fouling surfaces for implantable biomedical devices." Biomater Res 22: 3.

[40] Li, L., et al. (2011). "Synthesis and biocompatibility of a novel silicone hydrogel containing phosphorylcholine." European Polymer Journal 47(9): 1795-1803.

[41] Lin, T. A., et al. (2020). "Modified polypropylene/ thermoplastic polyurethane blends with maleic-anhydride grafted polypropylene: blending morphology and mechanical behaviors." Journal of Polymer Research 27(2): 34.

[42] Lin, Z., et al. (2018). "Facile Preparation of Epoxide-Functionalized Surfaces via Photocurable Copolymer Coatings and Subsequent Immobilization of Iminodiacetic Acids." ACS Appl Mater Interfaces 10(47): 40871-40879.

[43] Linxi, H., et al. (2013). "Surface patterning and modification of polyurethane biomaterials using silsesquioxane-gelatin additives for improved endothelial affinity." Science China Chemistry 57: 596-604.

[44] Liu, M., et al. (2018). "Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing." J Nanobiotechnology 16(1): 89.

[45] Liu, Q. and J. L. Locklin (2020). "Photocross-linking Kinetics Study of Benzophenone Containing Zwitterionic Copolymers." ACS Omega 5(16): 9204-9211.

[46] Liu, Q., et al. (2017). "Covalent Grafting of Antifouling Phosphorylcholine-Based Copolymers with Antimicrobial Nitric Oxide Releasing Polymers to Enhance Infection-Resistant Properties of Medical Device Coatings." Langmuir 33(45): 13105-13113.

[47] M.Stamm (2008). Polymer Surfaces and Interfaces, Springer-Verlag Berlin Heidelberg.

[48] Madeira, A., et al. (2009). "Coupling surface plasmon resonance to mass spectrometry to discover novel protein-protein interactions." Nat Protoc 4(7): 1023-1037.

[49] Münch, A. S., et al. (2019). "Tuning of Smart Multifunctional Polymer Coatings Made by Zwitterionic Phosphorylcholines." Advanced Materials Interfaces 7(1).

[50] Nagahashi, K., et al. (2015). "Stable surface coating of silicone elastomer with phosphorylcholine and organosilane copolymer with cross-linking for repelling proteins." Colloids Surf B Biointerfaces 134: 384-391.

[51] Nagahashi, K., et al. (2015). "Stable surface coating of silicone elastomer with phosphorylcholine and organosilane copolymer with cross-linking for repelling proteins." Colloids and surfaces. B, Biointerfaces 134: 384-391.

[52] Ngo, B. K. D. and M. A. Grunlan (2017). "Protein Resistant Polymeric Biomaterials." ACS Macro Letters 6(9): 992-1000.

[53] Nii, K., et al. (2012). "Zone electrophoresis of proteins in poly(dimethylsiloxane) (PDMS) microchip coated with physically adsorbed amphiphilic phospholipid polymer." Microfluidics and Nanofluidics 14(6): 951-959.

[54] Nii, K., et al. (2013). "Zone electrophoresis of proteins in poly(dimethylsiloxane) (PDMS) microchip coated with physically adsorbed amphiphilic phospholipid polymer." Microfluidics and Nanofluidics 14(6): 951-959.

[55] Pan, B., et al. (2004). "Photoinitiated grafting of maleic anhydride onto polypropylene." Journal of Polymer Science Part A: Polymer Chemistry 42(8): 1953-1962.

[56] Qiao, M., et al. (2017). "N-Halamine modified thermoplastic polyurethane with rechargeable antimicrobial function for food contact surface." RSC Advances 7(3): 1233-1240.

[57] Rahim, S., et al. (2012). "Surface modification of titanium oxide nanocrystals with PEG." Scientia Iranica 19(3): 948-953.

[58] Rhodes, M. C., et al. (2007). "Carcinogenesis studies of benzophenone in rats and mice." Food Chem Toxicol 45(5): 843-851.

[59] Robert-Nicoud, G. (2012). Development of New Silicone-based Biomaterials. Faculty of Medical and Human Sciences. School of Medicine, University of Manchester. 132.

[60] Robinson, S. and P. Williams (2002). "Inhibition of Protein Adsorption onto Silica by Polyvinylpyrrolidone." Langmuir 18.

[61] Rogulska, M. (2019). "Polycarbonate-based thermoplastic polyurethane elastomers modified by DMPA." Polymer Bulletin 76(9): 4719-4733.

[62] Sae-ung, P., et al. (2017). "Antifouling Stripes Prepared from Clickable Zwitterionic Copolymers." Langmuir 33(28): 7028-7035.

[63] Schmuser, L., et al. (2016). "Candle soot-based super-amphiphobic coatings resist protein adsorption." Biointerphases 11(3): 031007.

[64] Singha, P., et al. (2017). "Enhanced antibacterial efficacy of nitric oxide releasing thermoplastic polyurethanes with antifouling hydrophilic topcoats." Biomaterials Science 5(7): 1246-1255.

[65] Sun, M., et al. (2019). "Solvent-Free Graft-From Polymerization of Polyvinylpyrrolidone Imparting Ultralow Bacterial Fouling and Improved Biocompatibility." ACS Applied Bio Materials 2(9): 3983-3991.

[66] Tanaka, M. and Y. Iwasaki (2016). "Photo-assisted generation of phospholipid polymer substrates for regiospecific protein conjugation and control of cell adhesion." Acta Biomaterialia 40.

[67] Tsuji, K., et al. (2016). Polymer Surface Modifications by Coating. Printing on Polymers: 143-160.

[68] Vales, T. P., et al. (2020). "Development of Poly(2-Methacryloyloxyethyl Phosphorylcholine)-Functionalized Hydrogels for Reducing Protein and Bacterial Adsorption." Materials (Basel) 13(4).

[69] van Andel, E., et al. (2017). "Highly Specific Binding on Antifouling Zwitterionic Polymer-Coated Microbeads as Measured by Flow Cytometry." ACS Appl Mater Interfaces 9(44): 38211-38221.

[70] Williams, S. and N. Venkateswaran (2016). "Assessing Stability, Durability, and Protein Adsorption Behavior of Hydrophilic Silane Coatings in Glass Microchannels." Journal of Analytical & Bioanalytical Techniques 7(3).

[71] Wu, C., et al. (2019). "Formation of antifouling functional coating from deposition of a zwitterionic-co-nonionic polymer via “grafting to” approach." Journal of Saudi Chemical Society 23(8): 1080-1089.

[72] Wu, Z., et al. (2012). "Hemocompatible polyurethane surfaces." Polymers for Advanced Technologies 23.

[73] Xiaojuan Lai*, P. S. a. L. W. (2017). "Preparation and Properties of Epoxy-modified Waterborne Polyurethane/polyacrylate Composite Emulsion with the Action of Polmerizable Emulsifier." Applied Science and Engineering 20.

[74] Xie, D., et al. (2018). "Surface modification of polyurethane with a hydrophilic, antibacterial polymer for improved antifouling and antibacterial function." J Biomater Appl 33(3): 340-351.

[75] Xu, D., et al. (2016). "Antibacterial and antifouling properties of a polyurethane surface modified with perfluoroalkyl and silver nanoparticles." Journal of Biomedical Materials Research Part A 105.

[76] Yanase, Y., et al. (2014). "Surface plasmon resonance for cell-based clinical diagnosis." Sensors (Basel) 14(3): 4948-4959.

[77] Yang, Q., et al. (2010). "Anti-nonspecific protein adsorption properties of biomimetic glycocalyx-like glycopolymer layers: effects of glycopolymer chain density and protein size." Langmuir 26(8): 5746-5752.

[78] Yu, L., et al. (2017). "High-Antifouling Polymer Brush Coatings on Nonpolar Surfaces via Adsorption-Cross-Linking Strategy." ACS Appl Mater Interfaces 9(51): 44281-44292.

[79] Zander, Z. K. and M. L. Becker (2017). "Antimicrobial and Antifouling Strategies for Polymeric Medical Devices." ACS Macro Letters 7(1): 16-25.

[80] Zhang, H. and M. Chiao (2015). "Anti-fouling Coatings of Poly(dimethylsiloxane) Devices for Biological and Biomedical Applications." Journal of Medical and Biological Engineering 35(2): 143-155.

[81] Zheng, L., et al. (2017). "Applications of zwitterionic polymers." Reactive and Functional Polymers 118: 51-61.
指導教授 黃俊仁 李宇翔(Chun-Jen Huang Yu-Hsiang Lee) 審核日期 2021-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明