博碩士論文 107881001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.116.52.117
姓名 蕭博仁(Po-Jen Hsiao)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 臨床研究慢性腎臟疾病與腎病相關併發症
(Clinical investigations on chronic kidney diseases and kidney-associated complications)
相關論文
★ 探討黃蜂與火蟻叮咬傷造成之嚴重過敏反應病人臨床表現與處置及蜂膠萃取物抑制主動脈瘤生成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 腎臟是人體重要的滲透壓調節器官,通過過濾血液和處理電解質。腎臟疾病,尤其是慢性腎臟病(chronic kidney disease,CKD),是指患者的腎臟在數月或數年內受損,從而導致電解質失衡、蛋白尿,甚至死亡。CKD 和其他腎臟相關疾病與代謝異常、糖尿病、中風、心血管疾病、免疫功能障礙和微生物感染有關。因此,本論文旨在臨床研究CKD與電解質不平衡的關係,以及探討其他腎臟疾病與不同臨床併發症之成因與處置。第一章研究了CKD患者之腎臟對電解質的處理,結果顯示CKD合併糖尿病患者的鎂離子排泄分率 (fractional excretion) 較高,並且隨著CKD的分期而異。第二章探討糖尿病合併末期腎衰竭患者併發非酮性高血糖症與單側舞蹈症的臨床案例,結果顯示經過胰島素控制高血糖、以及適當內科藥物 (clonazepam and risperidone) 治療4週後,這些病症得到控制。第三章研究全身性輕鏈蛋白之類澱粉沉積症與腎臟疾病的關係,結果顯示經過口服melphalan藥物及手術治療後病患之蛋白尿、巨舌、上眼瞼下垂等併發症獲得改善。第四章研究一個肺隱球菌感染案例探討與急性腎損傷和過敏性肺炎的關係,結果顯示病患在經過6個月的抗黴菌治療後這些併發症消失且患者病況恢復。第五章研究了COVID-19疫苗誘發的血栓性血小板減少綜合症與腎上腺靜脈血栓形成的關係,結果顯示在經過靜脈注射免疫球蛋白和類固醇以及新型口服抗凝劑 (普栓達膠囊) 治療後,病患之抗血小板因子4抗體濃度、血小板數量和腎上腺靜脈血栓等併發症均得到改善。這五章的臨床結果提供了證據,證明了鎂離子排泄分率可以作為潛在CKD進展之預測因子,而且透過適當的診斷和藥物治療能改善微生物感染、疫苗或其他疾病患者腎臟相關之併發症。
摘要(英) The kidneys are the essential osmoregulatory organs in humans via filtering blood and processing electrolytes. Kidney disease, particularly chronic kidney disease (CKD), refers to the damage of the kidneys over a period of months or years in patients and thereby leading to electrolyte imbalance, proteinuria, and even death. CKD and other kidney diseases have been reported to associate with metabolic diseases, diabetes mellitus, stroke, cardiovascular disease, immunological dysfunction, and microbial infections. This dissertation was thus designed to clinically study CKD in association with electrolyte imbalances, as well as the associations of other kidney diseases with different clinical complications. Chapter One was to investigate the renal handling of electrolytes in patients with CKD and the results indicated that the fractional excretion of magnesium was higher in CKD patients with diabetes mellitus and varied with the stages of CKD. Chapter Two was to study an association of non-ketotic hyperglycemia and hemichorea-hemiballism in a diabetic patient with end-stage kidney disease, and the results showed these symptoms to be relieved after the 4-week treatment of hyperglycemia with insulin, clonazepam, and risperidone. Chapter Three was to study an association of systemic light-chain amyloidosis with renal disease, and the results indicated that the complications, such as proteinuria, macroglossia, and ptosis, were improved after melphalan treatment and surgical intervention. Chapter Four was to study an association of a patient infected by pulmonary cryptococcosis with acute kidney injury and hypersensitivity pneumonitis, the results indicated that the complications resolved and the patient recovered after the 6-month antifungal therapy. Chapter five was to study an association of COVID-19 vaccine-induced thrombotic thrombocytopenia syndrome with adrenal vein thrombosis. The results showed these complications, including the level of anti-platelet factor 4 antibody, platelet number, and adrenal vein thrombosis were improved after the treatment with intravenous immunoglobulin, methylprednisolone, and oral anticoagulant (dabigatran). These clinical results of the five chapters provide evidence for the potential use of fractional excretion of magnesium as a predictor of CKD progression, as well as using appropriate medical therapy for the improvement of renal complications in patients when they have a microbial infection, vaccination, or other clinical diseases.
關鍵字(中) ★ 慢性腎衰竭
★ 末期腎衰竭
★ 腎臟調控電解質
★ 排泄分率
★ 非酮性高血糖症
★ 單側舞蹈症
★ 類澱粉沉積症
★ 蛋白尿
★ 肺部隱球菌感染
★ 血栓併血小板低下症候群
★ 新冠肺炎
關鍵字(英) ★ Chronic kidney disease
★ End-stage kidney disease
★ Renal handling of electrolytes
★ Fractional excretion
★ Non-ketotic hyperglycemia
★ Hemichorea-hemiballism
★ Amyloidosis
★ Proteinuria
★ Pulmonary cryptococcosis
★ Thrombosis with thrombocytopenia syndrome
★ COVID-19
論文目次 Table of Contents
Chinese Abstract....................................................i
English Abstract..................................................iii
Declaration.................................................v
Acknowledgments...........................................vii
Table of Contents.................................................viii
List of Figures............................................xi
List of Tables............................................xiv
Abbreviations..............................................xv
1. General Introduction.....................................1
2. Chapter One: Investigation of Renal Handling of Electrolytes in Patients with Chronic Kidney Disease (CKD).......................................................7
Introduction................................................8
Materials and Methods.....................................................9
Results....................................................12
Discussion.................................................14
Conclusion.................................................22

3. Chapter Two: A Case Study of Non-ketotic Hyperglycemia and Hemichorea-hemiballism in a Patient with End-stage kidney disease (ESKD) ............................................23
Introduction...............................................24
Materials and Methods....................................................25
Results....................................................26
Discussion.................................................27
Conclusion.................................................31
4. Chapter Three: A Case Study of Systemic Light-chain Amyloidosis Associated with Renal Proteinuria, Macroglossia and Ptosis.....................................................32
Introduction...............................................33
Materials and Methods ...........................................................34
Results....................................................35
Discussion.................................................37
Conclusion.................................................40

5. Chapter Four: A Case Study of Pulmonary Cryptococcosis Complicated by Acute Kidney Injury and Hypersensitivity Pneumonitis................................................41
Introduction...............................................42
Materials and Methods ..................................44
Results....................................................45
Discussion.................................................46
Conclusion.................................................55
6. Chapter Five: A Case Study of COVID-19 Vaccine-induced Thrombotic Thrombocytopenia Syndrome Associated with Adrenal Veins Thrombosis...........................................56
Introduction...............................................57
Materials and Methods......................................58
Results....................................................59
Discussion.................................................60
Conclusion.................................................64
7. General Conclusions.....................................65
8. References..............................................67
參考文獻 1. Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382:260-272.
2. Eckardt KU, Coresh J, Devuyst O, et al. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet. 2013;382:158-169.
3. Hsiao PJ, Wu KL, Chiu SH, et al. Impact of the use of anti-diabetic drugs on survival of diabetic dialysis patients: a 5-year retrospective cohort study in Taiwan. Clin Exp Nephrol. 2017;21:694-704.
4. Hsiao PJ, Lin KS, Chiu CC, et al. Use of traditional Chinese medicine (Ren Shen Yang Rong Tang) against microinflammation in hemodialysis patients: An open-label trial. Complement Ther Med. 2015;23:363-371.
5. Hsiao PJ, Chan JS, Wu KL, et al. Comparison of short-term efficacy of iron sucrose with those of ferric chloride in hemodialysis patients: An open-label study. J Res Med Sci. 2016;21:99.
6. de Zeeuw D, Remuzzi G, Parving HH, et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int. 2004;65:2309-2320.
7. Ruggenenti P, Cravedi P, Remuzzi G. Mechanisms and treatment of CKD. J Am Soc Nephrol. 2012;23:1917-1928.
8. Hsiao PJ, Lin HC, Chang ST, et al. Albuminuria and neck circumference are determinate factors of successful accurate estimation of glomerular filtration rate in high cardiovascular risk patients. PLoS One. 2018;13:e0185693.
9. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345:851-860.
10. Nykjaer A, Dragun D, Walther D, et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell. 1999;96:507-515.
11. Haussler MR, Whitfield GK, Haussler CA, et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res. 1998;13:325-349.
12. Santoro D, Gagliostro G, Alibrandi A, et al. Vitamin D receptor gene polymorphism and left ventricular hypertrophy in chronic kidney disease. Nutrients. 2014;6:1029-1037.
13. Liu WC, Wu CC, Hung YM, et al. Pleiotropic effects of vitamin D in chronic kidney disease. Clin Chim Acta. 2016;453:1-12.
14. Lucisano S, Buemi M, Passantino A, Aloisi C, Cernaro V, Santoro D. New insights on the role of vitamin D in the progression of renal damage. Kidney Blood Press Res. 2013;37:667-678.
15. Lucisano S, Arena A, Stassi G, et al. Role of Paricalcitol in Modulating the Immune Response in Patients with Renal Disease. Int J Endocrinol. 2015;2015:765364.
16. Li YC, Qiao G, Uskokovic M, Xiang W, Zheng W, Kong J. Vitamin D: a negative endocrine regulator of the renin-angiotensin system and blood pressure. J Steroid Biochem Mol Biol. 2004;89-90:387-392.
17. Ruster C, Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol. 2006;17:2985-2991.
18. Ravani P, Malberti F, Tripepi G, et al. Vitamin D levels and patient outcome in chronic kidney disease. Kidney Int. 2009;75:88-95.
19. Rouached M, El Kadiri Boutchich S, Al Rifai AM, Garabedian M, Fournier A. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 2008;74:389-390.
20. Lu CL. Yeih DF, Hou YC, et al. The Emerging Role of Nutritional Vitamin D in Secondary Hyperparathyroidism in CKD. Nutrients. 2018;10:1890.
21. Zhang Y, Kong J, Deb DK, Chang A, Li YC. Vitamin D receptor attenuates renal fibrosis by suppressing the renin-angiotensin system. J Am Soc Nephrol. 2010;21:966-973.
22. Moore LW, Suki WN, Lunsford KE, Sabek OM, Knight RJ, Gaber AO. Cross-sectional evaluation of the relationship between vitamin D status and supplement use across levels of kidney function in adults. BMJ Open. 2019;9:e022471.
23. Hsiao PJ, Liao CY, Kao YH, et al. Comparison of fractional excretion of electrolytes in patients at different stages of chronic kidney disease: A cross-sectional study. Medicine. 2020;99:e18709.
24. Wu CC, Liao MT, Hsiao PJ, et al. Antiproteinuria Effect of Calcitriol in Patients With Chronic Kidney Disease and Vitamin D Deficiency: A Randomized Controlled Study. J Ren Nutr. 2020;30:200–207.
25. Hsiao PJ, Kuo CC, Kuo TY, et al. Investigation of the relationship between non-ketotic hyperglycemia and hemichorea-hemiballism: A case report. Medicine. 2019;98:e16255.
26. Hsiao PJ, Chang YC, Tsao YH, et al. Ptosis and macroglossia in a woman with systemic light-chain amyloidosis. Clin Chim Acta. 2019;494:112-115.
27. Hsiao PJ, Cheng H, Kao YH, et al. Comparison of laboratory diagnosis, clinical manifestation, and management of pulmonary cryptococcosis: Report of the clinical scenario and literature review. Clin Chim Acta. 2022;524:78-83.
28. Hsiao PJ, Wu KL, Chen YC, et al. The role of anti-platelet factor 4 antibodies and platelet activation tests in patients with vaccine-induced immune thrombotic thrombocytopenia: Brief report on a comparison of the laboratory diagnosis and literature review. Clin Chim Acta. 2022;529:42-45.
29. Dhondup T, Qian Q. Electrolyte and acid–base disorders in chronic kidney disease and end-stage kidney failure. Blood Purif. 2017;43:179–188.
30. Tanaka T, Okamura T, Miura K, et al. A simple method to estimate population 24-h urinary salt potassium excretion using a casual urine specimen. J Hum Hypertens. 2002;16:97–103.
31. Brown IJ, Dyer AR, Chan Q, et al. Group, Estimating 24-hour urinary sodium excretion from casual urinary sodium concentrations inWestern populations: the INTERSALT study. Am J Epidemiol. 2013;177:1180–1192.
32. Zhang T, Chang X, Liu W, et al. Comparison of sodium, potassium, calcium, magnesium, zinc, copper and iron concentrations of elements in 24-h urine and spot urine in hypertensive patients with healthy renal function. J Trace Elem Med Biol. 2017;44:104–108.
33. Mill JG, Rodrigues SL, Baldo MP, et al. Validation study of the Tanaka and Kawasaki equations to estimate the daily sodium excretion by a spot urine sample. Rev Bras Epidemiol. 2015;18(suppl 2):224–237.
34. Ilich JZ, Blanusa M, Orlic´ ZC, et al. Comparison of calcium,magnesium, sodium, potassium, zinc, and creatinine concentration in 24-h and spot urine samples in women. Clin Chem Lab Med. 2009;47:216–221.
35. Wu KL, Cheng CJ, Sung CC, et al. Identification of the causes for chronic hypokalemia for chronic hypokalemia: importance of urinary sodium and chloride excretion. Am J Med. 2017;130:846–855.
36. Li F, Guo H, Zou J, et al. The association of urinary sodium and potassium with renal uric acid excretion in patients with chronic kidney disease. Kidney Blood Press Res. 2018;43:1310–1321.
37. Walsh PR, Tse Y, Ashton E, et al. Clinical and diagnostic features of Bartter and Gitelman syndromes. Clin Kidney J. 2018;11:302–309.
38. Xu H, Hashem A, Witasp A, et al. Fibroblast growth factor 23 is associated with fractional excretion of sodium in patients with chronic kidney disease. Nephrol Dial Transplant. 2019;34:2051–2057.
39. Jiménez Villodres M, García Gutiérrez G, García Frías P, et al. Fractional excretion of phosphorus and vascular calcification in stage 3 chronic kidney disease. J Investig Med. 2019;67:674–680.
40. Ueda Y, Ookawara S, Ito K, et al. Changes in urinary potassium excretion in patients with chronic kidney disease. Kidney Res Clin Pract. 2016;35:78–83.
41. Haneda M, Utsunomiya K, Koya D, et al. A new Classification of Diabetic Nephropathy 2014: a report from Joint Committee on Diabetic Nephropathy. J Diabetes Invest. 2015;6:242–246.
42. Isakova T, Nickolas TL, Denburg M, et al. KDOQI US Commentary on the 2017 KDIGO Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD). Am J Kidney Dis. 2017;70:737–751.
43. Levey AS, Coresh J, Balk E, et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med. 2003;139:137–147.
44. Vassalotti JA, Centor R, Turner BJ, et al. Practical approach to detection andmanagement of chronic kidney disease for the primary care clinician. Am J Med. 2016;126:153–162.
45. Phelps KR, Lieberman RL. Fractional excretion and reabsorption in chronic kidney disease. Clin Nephrol. 2012;77:484–490.
46. Kroll MH, Elin RJ. Relationships between magnesium and protein concentrations in serum. Clin Chem. 1985;31:244–246.
47. Mateu-de Antonio J. New predictive equations for serum ionized calcium in hospitalized patients. Med Princ Pract. 2016;25:219–226.
48. Kannangara DR, Ramasamy SN, Indraratna PL, et al. Fractional clearance of urate: validation of measurement in spot-urine samples in healthy subjects and gouty patients. Arthritis Res Ther. 2012;14:2–8.
49. Bobulescu IA, Moe OW. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis. 2012;19:358–371.
50. Maesaka JK, Fishbane S. Regulation of renal urate excretion: a critical review. Am J Kidney Dis. 1998;32:917–933.
51. Sorensen LB, Levinson DJ. Origin and extrarenal elimination of uric acid in man. Nephron. 1975;14:7–20.
52. Coleman AJ, Arias M, Carter NW, et al. The mechanism of salt wastage in chronic renal disease. J Clin Invest. 1966;45:1116–1125.
53. Choi JW, Park JS, Koo TY, et al. Fractional excretion of uric acid as a predictor for saline responsiveness in long-term kidney transplant patients. Kidney Blood Press Res. 2012;35:627–633.
54. Bitew S, Imbriano L, Miyawaki N, et al. More on renal salt wasting without cerebral disease: response to saline infusion. Clin J Am Soc Nephrol. 2009;4:309–315.
55. Brosius FC, Lau K. Low fractional excretion of sodium in acute renal failure: role of timing of the test and ischemia. Am J Nephrol. 1986;6:450–457.
56. Zarich S, Fang LS, Diamond JR. Fractional excretion of sodium. Exceptions to its diagnostic value. Arch Intern Med. 1985;145:108–112.
57. Combs S, Berl T. Dysnatremias in patients with kidney disease. Am J Kidney Dis. 2014;63:294–303.
58. Weir MR, Rolfe M. Potassium homeostasis and renin-angiotensinaldosterone system inhibitors. Clin J Am Soc Nephrol. 2010;5:531–548.
59. Liamis G, Liberopoulos E, Barkas F, et al. Diabetes mellitus and electrolyte disorders. World J Clin Cases. 2014;2:488–496.
60. Kamel KS, Quaggin S, Scheich A, et al. Disorders of potassium homeostasis: an approach based on pathophysiology. Am J Kidney Dis. 1994;24:597–613.
61. Komaba H, FukagawaM. FGF23–parathyroid interaction: implications in chronic kidney disease. Kidney Int. 2010;77:292–298.
62. Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79:1370–1378.
63. Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol. 2015;10:1257–1272.
64. Alexander RT, Cordat E, Chambrey R, et al. Acidosis and urinary calcium excretion: insights from genetic disorders. J Am Soc Nephrol. 2016;27:3511–3520.
65. Oliveira RB, Cancela AL, Graciolli FG, et al. Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin J Am Soc Nephrol. 2010;5:286–291.
66. Kuro-O M. A phosphate-centric paradigm for pathophysiology and therapy of chronic kidney disease. Kideny Int Suppl. 2013;3:420–426.
67. Evenepoel P, Meijers B, Viaene L, et al. Fibroblast growth factor-23 in early chronic kidney disease: additional support in favor of a phosphatecentric paradigm for the pathogenesis of secondary hyperparathyroidism. Clin J Am Soc Nephrol. 2010;5:1268–1276.
68. Nitta K, NaganoN, Tsuchiya K. Fibroblast growth factor 23/Klotho axis in chronic kidney disease. Nephron Clin Pract. 2014;128:1–10.
69. Kawasaki T, Maeda Y, Matsuki H, et al. Urinary phosphorus excretion per creatinine clearance as a prognostic marker for progression of chronic kidney disease: a retrospective cohort study. BMC Nephrol. 2015;16:116.
70. Dai LJ, Ritchie G, Kerstan D, et al. Magnesium transport in the renal distal convoluted tubule. Physiol Rev. 2001;8:51–84.
71. Futrakul P, Yenrudi S, Futrakul N, et al. Tubular function and tubulointerstitial disease. Am J Kidney Dis. 1999;33:86–91.
72. Gheissari A, Andalib A, Labibzadeh N, et al. Fractional excretion of magnesium (FEMg), a marker for tubular dysfunction in children with clinically recovered ischemic acute tubular necrosis. Saudi J Kidney Dis Transpl. 2011;22:476–481.
73. Noiri C, Shimizu T, Takayanagi K, et al. Clinical significance of fractional magnesium excretion (FEMg) as a predictor of interstitialnephropathy and its correlation with conventional parameters. Clin Exp Nephrol 2015;19:1071–1078.
74. Žeravica R, Ilinčic´ B, Čabarkapa V, et al. Fractional excretion of magnesium and kidney function parameters in nondiabetic chronic kidney disease. Magnes Res. 2018;31:49–57.
75. de Zeeuw D, Agarwal R, Amdahl M, et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet. 2010;376:1543-1551.
76. De Nicola L, Conte G, Russo D, Gorini A, Minutolo R. Antiproteinuric effect of add-on paricalcitol in CKD patients under maximal tolerated inhibition of renin-angiotensin system: a prospective observational study. BMC Nephrol. 2012;13:150.
77. Deb DK, Sun T, Wong KE, et al. Combined vitamin D analog and AT1 receptor antagonist synergistically block the development of kidney disease in a model of type 2 diabetes. Kidney Int. 2010;77:1000-1009.
78. Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145:247-254.
79. Faul F, Erdfelder E, Lang AG, Buchner AG. *Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175-191.
80. Sawilowsky S. New effect size rules of thumb. J Mod Appl Stat Methods. 2009;8:467-474.
81. Cozzolino M, Gentile G, Mazzaferro S, Brancaccio D, Ruggenenti P, RemuzziG. Blood pressure, proteinuria, and phosphate as risk factors for progressive kidney disease: a hypothesis. Am J Kidney Dis. 2013;62:984-992.
82. Ravera M, Re M, Deferrari L, Vettoretti S, Deferrari G. Importance of blood pressure control in chronic kidney disease. J Am Soc Nephrol. 2006;17:S98-S103.
83. Alshahrani F, Aljohani N. Vitamin D: deficiency, sufficiency and toxicity. Nutrients. 2013;5:3605-3616.
84. Satirapoj B, Limwannata P, Chaiprasert A, Supasyndh O, Choovichian P. Vitamin D insufficiency and deficiency with stages of chronic kidney disease in an Asian population. BMC Nephrol. 2013;14:206.
85. Guessous I, McClellanW, Kleinbaum D, et al. Comparisons of serum vitamin D levels, status, and determinants in populations with and without chronic kidney disease not requiring renal dialysis: a 24-hour urine collection population-based study. J Ren Nutr. 2014;24:303-312.
86. Holick MF. Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol. 2009;19:73-78.
87. Franca Gois PH, Wolley M, Ranganathan D, Seguro AC. Vitamin D deficiency in chronic kidney disease: recent evidence and controversies. Int J Environ Res Public Health. 2018;15:1773.
88. Bouillon R, Carmeliet G, Verlinden L, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008;29:726-776.
89. Parvanova A, Trillini M, Podesta MA, et al. Moderate salt restriction with or without paricalcitol in type 2 diabetes and losartan-resistant macroalbuminuria (PROCEED): a randomised, double-blind, placebocontrolled, crossover trial. Lancet Diabetes Endocrinol. 2018;6:27-40.
90. Doorenbos CR, van den Born J, Navis G, de Borst MH. Possible renoprotection by vitamin D in chronic renal disease: beyond mineral metabolism. Nat Rev Nephrol. 2009;5:691-700.
91. Romero M, Ortega A, Olea N, et al. Novel role of parathyroid hormone-related protein in the pathophysiology of the diabetic kidney: evidence from experimental and human diabetic nephropathy. J Diabetes Res. 2013;2013:162846.
92. Perkovic V, Hewitson TD, Kelynack KJ, Martic M, Tait MG, Becker GJ. Parathyroid hormone has a prosclerotic effect on vascular smooth muscle cells. Kidney Blood Press Res. 2003;26:27-33.
93. Trovato GM, Martines GF, Trovato FM, Pirri C, Pace P, Catalano D. Renal resistive index and parathyroid hormone relationship with renal function in nondiabetic patients. Endocr Res. 2012;37:47-58.
94. Deen WM.What determines glomerular capillary permeability? J Clin Invest. 2004;114:1412-1414.
95. Choi SW, Kweon SS, Lee YH, et al. Parathyroid hormone levels are independently associated with eGFR and albuminuria: the Dong-gu study. J Nutr Sci Vitaminol (tokyo). 2018;64:18-25.
96. Sonneveld R, Ferre S, Hoenderop JG, et al. VitaminD down-regulates TRPC6 expression in podocyte injury and proteinuric glomerular disease. Am J Pathol. 2013;182:1196-1204.
97. Wang Y, Borchert ML, DeLuca HF. Identification of the vitamin D receptor in various cells of the mouse kidney. Kidney Int. 2012;81:993-1001.
98. Sonneveld R, Hoenderop JG, Stavenuiter AW, et al. 1,25-Vitamin D3 deficiency induces albuminuria. Am J Pathol. 2016;186:794-804.
99. Liu LJ, Lv JC, Shi SF, Chen YQ, Zhang H, Wang HY. Oral calcitriol for reduction of proteinuria in patients with IgA nephropathy: a randomized controlled trial. Am J Kidney Dis. 2012;59:67-74.
100. Bertoli M, LuisettoG, Ruffatti A, Urso M, Romagnoli G. Renal function during calcitriol therapy in chronic renal failure. Clin Nephrol. 1990;33:98-102.
101. Christiansen C, Rodbro P, Christensen MS, Hartnack B, Transbol I. Deterioration of renal function during treatment of chronic renal failure with 1,25-dihydroxycholecalciferol. Lancet. 1978;2:700-703.
102. AgarwalR,Hynson JE, HechtTJ, LightRP, SinhaAD. Short-termvitamin D receptor activation increases serum creatinine due to increased production with no effect on the glomerular filtration rate. Kidney Int. 2011;80:1073-1079.
103. Susantitaphong P, Nakwan S, Peerapornratana S, et al. A double-blind, randomized, placebo-controlled trial of combined calcitriol and ergocalciferol versus ergocalciferol alone in chronic kidney disease with proteinuria. BMC Nephrol. 2017;18:19.
104. Kovesdy CP, Ahmadzadeh S, Anderson JE, Kalantar-Zadeh K. Association of activated vitamin D treatment and mortality in chronic kidney disease. Arch Intern Med. 2008;168:397-403.
105. Molina P, Gorriz JL, MolinaMD, et al. The effect of cholecalciferol for lowering albuminuria in chronic kidney disease: a prospective controlled study. Nephrol Dial Transpl. 2014;29:97-109.
106. Kim MJ, Frankel AH, Donaldson M, et al. Oral cholecalciferol decreases albuminuria and urinary TGF-beta1 in patients with type 2 diabetic nephropathy on established renin-angiotensin-aldosterone system inhibition. Kidney Int. 2011;80:851-860.
107. Martin JP. Hemichorea resulting from a local lesion of the brain. Brain. 1927;50:637–651.
108. Matsuzono K, Suzuki M, Furuya K, et al. Hemichorea-hemiballism by branch atheromatous disease with a unique cerebral blood flow abnormality. J Neurol Sci. 2018;393:113–115.
109. Hawley JS, Weiner WJ. Hemiballismus: current concepts and review. Parkinsonism Relat Disord. 2012;18:125–129.
110. Jaafar J, Rahman RA, Draman N, et al. Hemiballismus in uncontrolled diabetes mellitus. Korean J Fam Med. 2018;399:200–203.
111. Kiryluk K, Khan F, Valeri A. Acute chorea and bilateral basal ganglia lesions in a hemodialysis patient. Kidney Int. 2008;73:1087–1091.
112. Mihai CM, Catrinoiu D, Stoicescu RM. Atypical onset of diabetes in a teenage girl: a case report. Cases J. 2008;1:425.
113. Nakajima N, UedaM, Nagayama H, et al. Putaminal changes before the onset of clinical symptoms in diabetic hemichorea-hemiballism. Intern Med. 2014;53:489–491.
114. Lin JJ, Chang MK. Hemiballism-hemichorea and non-ketotic hyperglycaemia. J Neurol Neurosurg Psychiatry. 1994;57:748–750.
115. Cheema H, Federman D, Kam A. Hemichorea-hemiballismus in nonketotic hyperglycaemia. J Clin Neurosci. 2011;18:293–294.
116. Qi X, Yan Y, Gao Y, et al. Hemichorea associated with non-ketotic hyperglycaemia: a case report. Diabetes Res Clin Pract. 2012;95:e1–3.
117. Ruhangisa F, Stephen H, Senkondo J, et al. Acute hemichorea in a newly diagnosed type II diabetes patient: a diagnostic challenge in resourcelimited setting: a case report. BMC Res Notes. 2016;9:413.
118. Pahalagamage SP, Senanayake S. Herath HMMTBCase report of hyperglycemic nonketotic chorea with rapid radiological resolution. BMC Med Imaging. 2017;17:54.
119. Bizet J, Cooper CJ, Quansah R, et al. Chorea, hyperglycemia, basal ganglia syndrome (C-H-BG) in an uncontrolled diabetic patient with normal glucose levels on presentation. Am J Case Rep. 2014;15:143–146.
120. Chang X, Hong W, Yu H, et al. Chorea associated with nonketotic hyperglycemia: a case report with atypical imaging changes. Medicine (Baltimore). 2017;96:e8602.
121. Taboada GF, Lima GA, Castro JE, et al. Dyskinesia associated with hyperglycemia and basal ganglia hyperintensity: report of a rare diabetic complication. Metab Brain Dis. 2013;28:107–110.
122. Oh SH, Lee KY, Im JH, et al. Chorea associated with non-ketotic hyperglycemia and hyperintensity basal ganglia lesion on T1-weighted brain MRI study: a meta-analysis of 53 cases including four present cases. J Neurol Sci. 2002;200:57–62.
123. Hwang KJ, Hong IK, Ahn TB, et al. Cortical hemichorea-hemiballism. J Neurol. 2013;260:2986–2992.
124. Patel B, Ladva ZR, Khan U. Hemichorea-hemiballism: a case report. Pract Neurol. 2015;15:222–223.
125. Tocco P, Barbieri F, Bonetti B, et al. Hemichorea-hemiballismus in patients with non-ketotic hyperglycemia. Neurol Sci. 2016;37:297–298.
126. Branca D, Gervasio O, Le Piane E, et al. Chorea induced by non-ketotic hyperglycaemia: a case report. Neurol Sci. 2005;26:275–277.
127. Hashimoto K, Ito Y, Tanahashi H, et al. Hyperglycemic chorea-ballism or acute exacerbation of Huntington’s chorea? Huntington’s disease unmasked by diabetic ketoacidosis in type 1 diabetes mellitus. J Clin Endocrinol Metab. 2012;97:3016–3020.
128. Manaka H, Kato T, Kurita K, et al. Marked increase in cerebrospinal fluid ubiquitin in Creutzfeldt-Jakob disease. Neurosci Lett. 1992;139:47–49.
129. Nakamura S, Yoshinari M, Wakisaka M, et al. Ketoacidosis accompanied by epileptic seizures in a patient with diabetes mellitus and mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Diabetes Metab. 2000;26:407–410.
130. Sharma CM, Pandey RK, Kumawat BL, et al. A unique combination of autoimmune limbic encephalitis, type 1 diabetes, and Stiff person syndrome associated with GAD-65 antibody. Ann Indian Acad Neurol. 2016;19:146–149.
131. Zaidi SA, Chhetri SK, Lekwuwa G, et al. An unusual presentation of diabetic amyotrophy: myoclonus. BMJ Case Rep. 2013;2013:pii:bcr2012008245.
132. Finsterer J, Zarrouk-Mahjoub S. Macroangiopathy is a typical phenotypic manifestation of MELAS. Metab Brain Dis. 2017;32:977–979.
133. Zhu K, Li S, Chen H, et al. Late onset MELAS with m.3243A > G mutation and its association with aneurysm formation. Metab Brain Dis. 2017;32:1069–1072.
134. Dember LM. Amyloidosis-associated kidney disease. Am. Soc. Nephrol. 2006;17:3458–3471.
135. Kyle RA, Bayrd ED. Amyloidosis, Review of 236 cases. Medicine (Baltimore). 1975;54:271–299.
136. Grogan M, Dispenzieri A, Gertz MA. Light-chain cardiac amyloidosis: strategies to promote early diagnosis and cardiac response. Heart. 2017;103:1065–1072.
137. Nuvolone M, Merlini G. Systemic amyloidosis: novel therapies and role of biomarkers. Nephrol Dial Transplant. 2017;32:770–780.
138. Hsiao PJ, Chiang WF, Chao TK, Lin SH. Life-threatening hematuria in a hemodialysis patient with systemic light-chain amyloidosis. Clin Chim Acta. 2015;451:180–182.
139. Nielsen NS, Poulsen ET, Klintworth GK, Enghild JJ. Insight into the protein composition of immunoglobulin light chain deposits of eyelid, orbital and conjunctivalamyloidosis. J Proteome Bioinform. 2014;(Suppl. 8):002.
140. Desport E, Bridoux F, Sirac C, et al. Al amyloidosis. Orphanet J. Rare Dis. 2012;7:54.
141. Prokaeva T, Spencer B, Kaut M, et al. Soft tissue, joint, and bone manifestations of AL amyloidosis: clinical presentation, molecular features, and survival. Arthritis Rheum. 2007;56:3858–3868.
142. Gertz MA. Immunoglobulin light chain amyloidosis: 2014 update on diagnosis, prognosis, and treatment. Am J Hematol. 2014;89:1132–1140.
143. Thibault I, Vallières I. Macroglossia due to systemic amyloidosis: is there a role for radiotherapy. Case Rep Oncol. 2011;4:392–399.
144. Shahbaz A, Aziz K, Umair M, Malik ZR, Awan SI, Sachmechi I. Amyloidosis presenting with macroglossia. Cureus. 2018;10:e3185.
145. Aryasit O, Preechawai P, Kayasut K. Clinical presentation, treatment, and prognosis of periocular and orbital amyloidosis in a university-based referral center. Clin Ophthalmol. 2013;7:801–805.
146. Caggiati A, Campanella A, Tenna S, Cogliandro A, Potenza C, Persichetti P. Primary amyloidosis of the eyelid: a case report. In Vivo. 2010;24:575–578.
147. Suesskind D, Ziemssen F, Rohrbach JM. Conjunctival amyloidosis-clinical and histopathologic features. Graefes Arch Clin Exp Ophthalmol. 2015;253:1377–1383.
148. Mora-Horna ER, Rojas-Padilla R, López VG, Guzmán MJ, Ceriotto A, Salcedo G. Ocular adnexal and orbital amyloidosis: a case series and literature review. Int Ophthalmol. 2016;36:281–298.
149. Correa LJ, Maccio JP, Esposito E, et al. Systemic amyloidosis with bilateral conjunctival involvement: a case report. BMC Ophthalmol. 2015;15:77.
150. Oishi A, Miyamoto K, Yoshimura N. Orbital amyloidosis-induced compressive optic neuropathy accompanied by characteristic eyelid pigmentation. Ophthalmic Plast Reconstr Surg. 2006:22:485–487.
151. Topalkara A, Ben-Arie-Weintrob Y, Ferry JA, Foster CS. Conjunctival marginal zone B-cell lymphoma (MALT lymphoma) with amyloid and relapse in the stomach. Ocul Immunol Inflamm. 2007;15:347–350.
152. Abdallah AO, Westfall C, Brown H, Muzaffar J, Atrash S, Nair B. Unilateral conjunctival AL kappa amyloidosis with trace evidence of systemic amyloidosis. Am J Case Rep. 2012;13:102–105.
153. Eneh AA, Farmer J, Kratky V. Kratky, Primary localized orbital amyloid: case report and literature review; 2004-2015, Can. J. Ophthalmol. 2016;51:e131–e136.
154. Jenner E. Serum free light chains in clinical laboratory diagnostics. Clin Chim Acta 2014;427:15–20.
155. Piehler AP, Gulbrandsen N, Kierulf P, Urdal P. Quantitation of serum free light chains in combination with protein electrophoresis and clinical information for diagnosing multiple myeloma in a general hospital population. Clin Chem. 2008;54:1823–1830.
156. Kumar S, Dispenzieri A, Katzmann JA, et al. Serum immunoglobulin free light chain measurement in primary amyloidosis: prognostic value and correlations with clinical features. Blood. 2010;116:5126–5129.
157. Bogov B, Lubomirova M, Kiperova B. Biopsy of subcutaneus fatty tissue for diagnosis of systemic amyloidosis. Hippokratia. 2008;12:236–239.
158. Sanchorawala V. Light-chain (AL) amyloidosis: diagnosis and treatment. Clin J Am Soc Nephrol. 2006;1:1331–1341.
159. Angiero F, Seramondi R, Magistro S, et al. Amyloid deposition in the tongue: clinical and histopathological profile. Anticancer Res. 2010;30:3009–3014.
160. Kastritis E, Dimopoulos MA. Recent advances in the management of AL amyloidosis. Br J Haematol. 2016;172:170–186.
161. Kuehn BM. Pulmonary Fungal Infections Affect Patients With COVID-19. JAMA 2020;324:2248.
162. Schmiedel Y, Zimmerli S. Common invasive fungal diseases: An overview of invasive candidiasis, aspergillosis, cryptococcosis, and Pneumocystis pneumonia. Swiss Med Wkly. 2016;146:w14281.
163. Speed B, Dunt D. Clinical and host differences between infections with the two varieties of Cryptococcus neoformans. Clin Infect Dis. 1995;21:28–34.
164. Maziarz EK, Perfect JR. Cryptococcosis. Infect Dis Clin North Am. 2016;30:179-206.
165. Shuai SY, Xiong L, He XL, Yu F, Xia Q, Zhou Q. A unique case report of endobronchial cryptococcosis and review of the literature, Respir Med Case Rep. 2018;25:247–252.
166. Lui G, Lee N, Ip M, et al. Cryptococcosis in apparently immunocompetent patients. QJM. 2006;99:143–151.
167. Nalintya E, Kiggundu R, Meya D. Evolution of Cryptococcal Antigen Testing: What is new? Curr Fungal Infect Rep. 2016;10:62–67.
168. Girard M, Lacasse Y, Cormier Y. Hypersensitivity pneumonitis. Allergy. 2009;64:322-334.
169. Tseng HK, Liu CP, Ho MW, et al. Taiwan Infectious Diseases Study Network for Cryptococcosis. Microbiological, epidemiological, and clinical characteristics and outcomes of patients with cryptococcosis in Taiwan, 1997- 2010. PLoS One. 2013;8:e61921
170. Setianingrum F, Rautemaa-Richardson R, Denning DW. Pulmonary cryptococcosis: A review of pathobiology and clinical aspects. Med Mycol. 2019;57:133-150.
171. Kohno S, Kakeya H, Izumikawa K, et al. Clinical features of pulmonary cryptococcosis in non-HIV patients in Japan. J Infect Chemother. 2015;21:23–30.
172. Danesi P, Falcaro C, Schmertmann LJ, de Miranda LHM, Krockenberger M, Malik R. Cryptococcus in Wildlife and Free-Living Mammals. J Fungi (Basel). 2021;7:29.
173. May RC, Stone NR, Wiesner DL, Bicanic T, Nielsen K. Cryptococcus: from environmental saprophyte to global pathogen. Nat Rev Microbiol. 2016;14:106–117.
174. Nielsen K, De Obaldia AL, Heitman J. Cryptococcus neoformans mates on pigeon guano: implications for the realized ecological niche and globalization. Eukaryot Cell. 2007;6:949–959.
175. Perfect JR, Dismukes WE, Dromer F, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2010;50:291–322.
176. Boulware DR, Rolfes MA, Rajasingham R, et al. Multisite validation of cryptococcal antigen lateral flow assay and quantification by laser thermal contrast. Emerg Infect Dis. 2014;20:45–53.
177. Firacative C, Trilles L, Meyer W. MALDI-TOF MS Enables the Rapid Identification of the Major Molecular Types within the Cryptococcus neoformans/C. gattii Species Complex. PLoS One. 2012;7:e37566.
178. Rajasingham R, Smith RM, Park BJ, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17:873–881.
179. Girard M, Israël-Assayag E, Cormier Y. Cormier, Impaired function of regulatory T-cells in hypersensitivity pneumonitis. Eur Respir J. 2011;37:632–639.
180. Grunes D, Beasley MB. Hypersensitivity pneumonitis: A review and update of histologic findings. J Clin Pathol. 2013;66:888–895.
181. Huang J, Lan C, Li H, Chen S, Lin Q, Weng H. Concomitant lung adenocarcinoma and pulmonary cryptococcosis confirmed by pathologic examinations. Medicine (Baltimore). 2019;98:e18316.
182. Huang J, Lan C, Li H, Chen S, Lin Q, Weng H. Concomitant severe influenza and cryptococcal infections: A case report and literature review. Medicine (Baltimore). 2019;98:e15544.
183. Thambidurai L, Prabhuradhan R, Singhvi P, Ilanchezhian S, Ramachandran R, Shankar H. Cryptococcal pneumonia: The great mimicker. BJR Case Rep. 2017;3:20150358.
184. Riario Sforza GG, Marinou A. Hypersensitivity pneumonitis: A complex lung disease. Clin Mol Allergy. 2017;15:6.
185. Vasakova M, Morell F, Walsh S, Leslie K, Raghu G. Hypersensitivity pneumonitis: Perspectives in diagnosis and management. Am J Respir Crit Care Med. 2017;196:680–689.
186. Groot Kormelink T, Pardo A, Knipping K, et al. Immunoglobulin free light chains are increased in hypersensitivity pneumonitis and idiopathic pulmonary fibrosis. PLoS One. 2011;6:e25392.
187. van de Wiele N, Neyra E, Firacative C, et al. Molecular Epidemiology Reveals Low Genetic Diversity among Cryptococcus neoformans Isolates from People Living with HIV in Lima, Peru, during the Pre-HAART Era. Pathogens. 2020;9:665.
188. Han LT, Wu L, Liu TB. Predicted Mannoprotein Cmp1 Regulates Fungal Virulence in Cryptococcus neoformans. Pathogens. 2020;9:881.
189. Bongomin F, Oladele RO, Gago S, Moore CB, Richardson MD. Richardson, A systematic review of fluconazole resistance in clinical isolates of Cryptococcus species. Mycoses. 2018;61:290–297.
190. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382:727–733.
191. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20:533–534.
192. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.
193. Li YD, Chi WY, Su JH, Ferrall L, Hung CF, Wu TC. Coronavirus vaccine development: from SARS and MERS to COVID-19. J Biomed Sci. 2020;27:104.
194. Dakay K, Cooper J, Bloomfield J, et al. Cerebral venous sinus thrombosis in covid-19 infection: a case series and review of the literature, J Stroke Cerebrovasc Dis. 2021;30:105434.
195. Scully M, Singh D, Lown R, et al. Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination. N Engl J Med. 2021;384:2202–2211.
196. Wang RL, Chiang WF, Shyu HY, et al. COVID-19 vaccine-associated acute cerebral venous thrombosis and pulmonary artery embolism. QJM. 2021;114:506–507.
197. Sholzberg M, Arnold DM, Laupacis A. Recognizing, managing and reporting vaccine-induced immune thrombotic thrombocytopenia. CMAJ. 2021;193:E913–E915.
198. Franchini M, Liumbruno GM, Pezzo M. COVID-19 vaccine-associated immune thrombosis and thrombocytopenia (VITT): Diagnostic and therapeutic recommendations for a new syndrome. Eur J Haemato. 2021;107:173–180.
199. Schultz NH, Sørvoll IH, Michelsen AE, et al. Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination, N Engl J Med. 2021;384:2124–2130.
200. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Eichinger, Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination, N Engl J Med. 2021;384:2092–2101.
201. COVID-19 vaccines safety and blood clots. 19 May, 2021; https://post.parliament.uk/covid-19-vaccines-safety-and-blood-clots/
202. Notification of the adverse events after COVID-19 vaccination. Taiwan Centers for Disease Control; https://www.cdc.gov.tw/Category/MPage/Q8n9n-Q4aBpRrGnKVGFkng.
203. Hwang J, Lee SB, Lee SW, et al. Comparison of vaccine-induced thrombotic events between ChAdOx1 nCoV-19 and Ad26.COV.2.S vaccines. J. Autoimmun. 2021;122:102681.
204. Sadoff J, Davis K, Douoguih M. Thrombotic Thrombocytopenia after Ad26.COV2. S Vaccination - Response from the Manufacturer. N Engl J Med. 2021;384:1965–1966.
205. Lin CY, Huang LY, Wu KA, et al. Response to bilateral adrenal haemorrhage in the differential diagnosis of abdominal pain in vaccine-induced thrombosis with thrombocytopenia. QJM. 2022;114:910-911.
206. Platton S, Bartlett A, MacCallum P, et al. Evaluation of laboratory assays for anti-platelet factor 4 antibodies after ChAdOx1 nCOV-19 vaccination, J. Thromb. Haemost. 2021;19:2007–2013.
207. Reilly-Stitt C, Kitchen S, Jennings I, et al. Walker, Anti-PF4 testing for vaccine-induced immune thrombocytopenia and thrombosis and heparin induced thrombocytopenia: Results from a UK National External Quality Assessment Scheme exercise April 2021. J Thromb Haemost. 2021;19:2263–2267.
208. Sachs UJ, Cooper N, Czwalinna A, et al. PF4- Dependent Immunoassays in Patients with Vaccine-Induced Immune Thrombotic Thrombocytopenia: Results of an Interlaboratory Comparison. Thromb Haemost. 2021;121:1622-1627.
209. Alam W. COVID-19 vaccine-induced immune thrombotic thrombocytopenia: A review of the potential mechanisms and proposed management. Sci Prog. 2021;104:368504211025927.
210. Favaloro EJ. Laboratory testing for suspected COVID-19 vaccine-induced (immune) thrombotic thrombocytopenia. Int J Lab Hematol. 2021;43:559–570.
211. Chen YC, Lin CY, Tsai CS. The frequency of heparin-induced thrombocytopenia in Taiwanese patients undergoing cardiopulmonary bypass surgery, J Formos Med Assoc. 2015;114:981–987.
212. Hogan M, Berger JS. Heparin-induced thrombocytopenia (HIT): Review of incidence, diagnosis, and management. Vasc Med. 2020;25:160–173.
指導教授 褚志斌 高永旭(Chih-Pin Chuu Yung-Hsi Kao) 審核日期 2022-9-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明