博碩士論文 108022002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:3.215.186.30
姓名 黃柏瑞(Po-Jui Huang)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 以衛星影像及機器學習進行崩塌地偵測
(Landslide Detection with Machine Learning Analysis of Satellite Images)
相關論文
★ 三維房屋模型實景紋理影像製作與敷貼之研究★ 紋理輔助高解析度衛星影像分析應用於偵測入侵性植物分布之研究
★ 利用高光譜影像偵測外來植物-以恆春地區銀合歡為例★ 以視訊影像進行三維房屋模型實景紋理敷貼之研究
★ 區塊式Level of Detail地景視覺模擬之研究★ 高光譜影像立方體紋理特徵之三維計算
★ 漸變式多重解析度於大型地景視覺模擬之應用★ 區塊式LOD網格細化於大型地形視覺模擬之應用
★ 多層次精緻度三維房屋模型之建置★ 高光譜影像立方體於特徵空間之三維紋理計算
★ 影像修補技術於牆面紋理影像遮蔽去除之應用★ 結合遙測影像與GIS資料以資料挖掘 技術進行崩塌地辨識-以石門水庫集水區為例
★ 利用近景影像提高三維建物模型之細緻化等級★ 以地面及空載光達點雲重建複雜物三維模型
★ 以半自動化模式建置公開資料之三維建物模型★ 高精緻度房屋模型結合蟻群演算法於室內最佳路徑選擇之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 崩塌是台灣山區一種非常常見的自然災害,對於崩塌災害管理,分析崩塌之特徵、發生源及過去的災害事件非常的重要,而在崩塌災害分析中,崩塌資料庫擁有高度需求,因此資料庫的建置是一項基本且重要的工作,崩塌資料庫繪製的工作在遙測技術及影像分析的進步下變得非常有效率,本研究利用深度學習架構並使用衛星遙測資料進行崩塌地識別以建構崩塌資料庫。而進行崩塌地識別時需要有足夠且適當的資料且此些資料須與崩塌地有高度相關,因此,本研究收集及數化由2000至2014發生於石門水庫集水區及荖濃溪流域的崩塌地圖資作為訓練之標記資料。另外,本研究使用了光學衛星影像、常態化差值植生指標(NDVI)、灰度共生矩陣(GLCM)紋理特徵及地形因子作為訓練之輸入資料。其中,前三者為雙時相資料,而地形因子僅包含單一時相。而因為研究中訓練資料集中的輸入資料包含不同時序的二維影像,並有多樣化特性,因此,此研究建置一「兩步驟」的訓練架構以因應輸入資料之不同特性;第一步驟中將特徵擷取模型ConvLSTM U-Net用於萃取雙時相影像中的特徵,而在第二步中將隨機森林(Random Forest)模型用於分析特徵圖及地形因子以產生最後崩塌地辨識結果。
摘要(英) Landslide is one of the common natural hazards in the mountainous regions of Taiwan. For landslide management, it is very important to analyze the characteristics, occurrence and past-hazard events of landslides. Therefore, landslide detection is a fundamental and important task, and it is also in high demand for disaster assessment. Combining with remotely sensed data and image analysis landslide mapping task is time-effective nowadays. This study conducts landslide detection using deep learning framework with satellite remote sensing images and spatial data. Landslide recognition requires adequate data with high relationship to the occurrence of landslides. Therefore, this study manually collects past hazard events from 2000 to 2014 in Shimen and Laonong watersheds, Taiwan as training dataset. In addition, available features including optical satellite images, NDVI, gray level co-occurrence matrix (GLCM) texture features and topographic factors are adopted for detecting landslide. The former three components are bitemporal images, yet topographic factors only contain one-time stamp. Because the training data-used contains time series of two-dimensional images and multi-types input features, this study integrates feature extraction and classification processes into a two-steps training framework to adapt to the existing data for landslide identification. In the first step, ConvLSTM U-Net model is used as feature extraction model for extracting features from bitemporal images. In the second step, random forest is utilized as a final classifier to analyze input data of feature maps and topographic elements.
The trained model is employed to create landslide maps in selected ten test regions. The detected landslide maps are evaluated by quantitative indexes, e.g., Precision, Recall, F1-score, IOU and Kappa. The assessment results indicate that the developed deep learning framework can achieve the accuracies of higher than 0.7 of IOU, 0.8 of F1-score and 0.8 of Kappa.
關鍵字(中) ★ 崩塌地偵測
★ 機器學習
關鍵字(英) ★ Landslide detection
★ Machine learning
論文目次 摘要 I
ABSTRACT I
CONTENTS III
LIST OF FIGURES V
LIST OF TABLES VIII
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Objective and Scope 4
1.3 Thesis Outline 6
CHAPTER 2 LITERATURE REVIEW 7
2.1 Conventional Landslide Mapping Approaches 7
2.2 Advanced Data for Landslide Mapping 8
2.3 Advanced Landslide Mapping Approaches 8
2.3.1 Decision Tree 9
2.3.2 Random Forest 9
2.3.3 Support Vector Machine (SVM) 10
2.3.4 Neural Network 10
2.4 Summary 12
CHAPTER 3 STUDY AREAS AND MATERIALS 14
3.1 Shimen Reservoir Watershed 14
3.2 Laonong River Watershed 14
3.3 Data Used 15
3.3.1 Spectral Features 16
3.3.2 Texture Features 16
3.3.3 NDVI 19
3.3.4 Topographic Factors 19
CHAPTER 4 METHODOLOGY 24
4.1 Dataset Establishment 25
4.2 Proposed Deep Learning Framework 30
4.2.1 Basic Concept of Deep Learning 30
4.2.2 Proposed ConvLSTM U-NET 37
4.2.3 Random Forest 44
4.2.4 Two-steps Training 45
4.3 Assessment Strategies 46
CHAPTER 5 RESULTS AND DISCUSSION 50
5.1 Detection Results and Assessment of The Proposed Framework 53
5.2 Comparison with Other Models 74
5.3 Summary 78
CHAPTER 6 CONCLUSIONS 80
6.1 Limitations and Suggestions 81
REFERENCES 82
參考文獻 Ballabio, C., & Sterlacchini, S. (2012). Support vector machines for landslide susceptibility mapping: the Staffora River Basin case study, Italy. Mathematical geosciences, 44(1), 47-70.
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Casson, B., Delacourt, C., Baratoux, D., & Allemand, P. (2003). Seventeen years of the “La Clapiere” landslide evolution analysed from ortho-rectified aerial photographs. Engineering Geology, 68(1-2), 123-139.
Catani, F., Lagomarsino, D., Segoni, S., & Tofani, V. (2013). Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Natural Hazards and Earth System Sciences, 13(11), 2815-2831.
Chen, W., Chai, H., Zhao, Z., Wang, Q., & Hong, H. (2016). Landslide susceptibility mapping based on GIS and support vector machine models for the Qianyang County, China. Environmental Earth Sciences, 75(6), 474.
Chen, W., Li, X., Wang, Y., Chen, G., & Liu, S. (2014). Forested landslide detection using LiDAR data and the random forest algorithm: A case study of the Three Gorges, China. Remote sensing of environment, 152, 291-301.
Colesanti, C., & Wasowski, J. (2006). Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Engineering geology, 88(3-4), 173-199.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
Delacourt, C., Allemand, P., Casson, B., & Vadon, H. (2004). Velocity field of the “La Clapière” landslide measured by the correlation of aerial and QuickBird satellite images. Geophysical Research Letters, 31(15).
Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179-211.
Fruneau, B., Achache, J., & Delacourt, C. (1996). Observation and modelling of the Saint-Etienne-de-Tinée landslide using SAR interferometry. Tectonophysics, 265(3-4), 181-190.
Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S. R., Tiede, D., & Aryal, J. (2019). Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sensing, 11(2), 196.
Glenn, N. F., Streutker, D. R., Chadwick, D. J., Thackray, G. D., & Dorsch, S. J. (2006). Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology, 73(1-2), 131-148.
Gritzner, M. L., Marcus, W. A., Aspinall, R., & Custer, S. G. (2001). Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology, 37(1-2), 149-165.
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K. T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1-2), 42-66.
Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on systems, man, and cybernetics, (6), 610-621.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
Hervás, J., Barredo, J. I., Rosin, P. L., Pasuto, A., Mantovani, F., & Silvano, S. (2003). Monitoring landslides from optical remotely sensed imagery: the case history of Tessina landslide, Italy. Geomorphology, 54(1-2), 63-75.
Highland, L., & Bobrowsky, P. T. (2008). The landslide handbook: a guide to understanding landslides (p. 129). Reston: US Geological Survey.
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708).
Kimura, H., & Yamaguchi, Y. (2000). Detection of landslide areas using satellite radar interferometry. Photogrammetric engineering and remote sensing, 66(3), 337-344.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105.
Lai, J. S., & Tsai, F. (2019). Improving GIS-based landslide susceptibility assessments with multi-temporal remote sensing and machine learning. Sensors, 19(17), 3717.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
Lee, S., Chwae, U., & Min, K. (2002). Landslide susceptibility mapping by correlation between topography and geological structure: the Janghung area, Korea. Geomorphology, 46(3-4), 149-162.
Lei, T., Zhang, Y., Lv, Z., Li, S., Liu, S., & Nandi, A. K. (2019). Landslide inventory mapping from bitemporal images using deep convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 16(6), 982-986.
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431-3440).
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
McKean, J., & Roering, J. (2004). Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology, 57(3-4), 331-351.
Mezaal, M. R., Pradhan, B., & Rizeei, H. M. (2018). Improving landslide detection from airborne laser scanning data using optimized Dempster–Shafer. Remote Sensing, 10(7), 1029.
Mezaal, M. R., Pradhan, B., Shafri, H. Z. M., & Yusoff, Z. M. (2017). Automatic landslide detection using Dempster–Shafer theory from LiDAR-derived data and orthophotos. Geomatics, Natural Hazards and Risk, 8(2), 1935-1954.
Nagi, J., Ducatelle, F., Di Caro, G. A., Cireşan, D., Meier, U., Giusti, A., ... & Gambardella, L. M. (2011, November). Max-pooling convolutional neural networks for vision-based hand gesture recognition. In 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA) (pp. 342-347). IEEE.
Nasr, G. E., Badr, E. A., & Joun, C. (2002, May). Cross entropy error function in neural networks: Forecasting gasoline demand. In FLAIRS conference (pp. 381-384).
Nichol, J. E., Shaker, A., & Wong, M. S. (2006). Application of high-resolution stereo satellite images to detailed landslide hazard assessment. Geomorphology, 76(1-2), 68-75.
Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation functions: Comparison of trends in practice and research for deep learning. arXiv preprint arXiv:1811.03378.
Ray, R. G. (1960). Aerial photographs in geologic interpretation and mapping (No. 373-375). US Government Printing Office.
Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386.
Rosin, P. L., Hervás, J., & Barredo, J. I. (2000). Remote sensing image thresholding for landslide motion detection. In 1st Int. Workshop on Pattern Recognition Techniques in Remote Sensing (pp. 10-17).
Rott, H., Scheuchl, B., Siegel, A., & Grasemann, B. (1999). Monitoring very slow slope movements by means of SAR interferometry: A case study from a mass waste above a reservoir in the Ötztal Alps, Austria. Geophysical Research Letters, 26(11), 1629-1632.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533-536.
Saito, H., Nakayama, D., & Matsuyama, H. (2009). Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains, Japan. Geomorphology, 109(3-4), 108-121.
Sameen, M. I., & Pradhan, B. (2019). Landslide detection using residual networks and the fusion of spectral and topographic information. IEEE Access, 7, 114363-114373.
Shi, X., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., & Woo, W. C. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. arXiv preprint arXiv:1506.04214.
Shimizu, F. (1983). Aerial-photograph interpretation for landslide mapping in the Shinjo Area, northeast Japan. Landslides, 19(3), 10-18.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Squarzoni, C., Delacourt, C., & Allemand, P. (2003). Nine years of spatial and temporal evolution of the La Valette landslide observed by SAR interferometry. Engineering Geology, 68(1-2), 53-66.
Stumpf, A., & Kerle, N. (2011). Object-oriented mapping of landslides using Random Forests. Remote sensing of environment, 115(10), 2564-2577.
Szandała, T. (2021). Review and Comparison of Commonly Used Activation Functions for Deep Neural Networks. In Bio-inspired Neurocomputing (pp. 203-224). Springer, Singapore.
Tarchi, D., Casagli, N., Fanti, R., Leva, D. D., Luzi, G., Pasuto, A., ... & Silvano, S. (2003). Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Engineering geology, 68(1-2), 15-30.
Tien, B., D., Pradhan, B., Lofman, O., & Revhaug, I. (2012). Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and Naive Bayes Models. Mathematical problems in Engineering, 2012.
Tien, B., D., Shahabi, H., Shirzadi, A., Chapi, K., Alizadeh, M., Chen, W., ... & Tian, Y. (2018). Landslide detection and susceptibility mapping by airsar data using support vector machine and index of entropy models in cameron highlands, malaysia. Remote Sensing, 10(10), 1527.
Tsai, F., Lai, J. S., Chen, W. W., & Lin, T. H. (2013). Analysis of topographic and vegetative factors with data mining for landslide verification. Ecological engineering, 61, 669-677.
Van Westen, C. J., & Getahun, F. L. (2003). Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models. Geomorphology, 54(1-2), 77-89.
Vietmeier, J., Wagner, W., & Dikau, R. (1999, November). Monitoring moderate slope movements (landslides) in the southern French Alps using differential SAR interferometry. In Proceedings of Fringe (Vol. 99, pp. 10-12).
Wang, Y., Fang, Z., Wang, M., Peng, L., & Hong, H. (2020). Comparative study of landslide susceptibility mapping with different recurrent neural networks. Computers & Geosciences, 138, 104445.
Yeon, Y. K., Han, J. G., & Ryu, K. H. (2010). Landslide susceptibility mapping in Injae, Korea, using a decision tree. Engineering Geology, 116(3-4), 274-283.
Yu, B., Chen, F., & Xu, C. (2020). Landslide detection based on contour-based deep learning framework in case of national scale of Nepal in 2015. Computers & Geosciences, 135, 104388.
指導教授 蔡富安(Fuan Tsai) 審核日期 2021-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明