博碩士論文 108022004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:44.192.48.196
姓名 吳彥誼(Yen-Yi Wu)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 基於SAR的數值高程模型的定性與定量分析
(Exploration for Visual and Numeric Interpretation of SAR-based Digital Elevation Models)
相關論文
★ 利用影像處理進行遙測影像的河道偵測與醫學影像的血管偵測★ 可調式都卜勒主動雷達校正器之改良研究
★ 基於色彩校正的遙測影像變遷偵測★ 應用階層式親和力傳播理論進行高光譜影像分類
★ 遙測影像中雲及其陰影的移除及雲高估計★ 龜山島周圍海域熱液與地震的關係
★ 利用穿牆連續波雷達分析人體步態的微都卜勒效應★ 新穎的混合式角反射器法於全極化合成孔徑雷達校正
★ 應用多光譜遙測影像進行線性及非線性 水深反演模式之探討★ 非線性像元分解考慮多次反射應用於高光譜影像
★ 使用MODIS偵測地溫異常-熱異常和地震的相關性★ 多光譜遙測影像自動偵測城市道路
★ 地球同步衛星觀測資料之雲區像素辨識★ 結合掩星折射率與高光譜紅外線觀測之大氣溫溼度垂直剖面反演
★ 應用遙測影像之水深校正於東沙環礁海草棲地變遷★ 應用多時期向日葵8號衛星影像進行雲像素的偵測與追蹤
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 合成孔徑干涉雷達(InSAR)是一種用於監測地球表面的有用技術,其常見的應用之一是繪製地形圖。對於重複式軌道干涉的雷達系統而言,傳統的InSAR方法在取得高解析度地形圖常會受到限制,因為不同類型的去相關、大氣延遲、散射特性、表面變形和幾何變形都是影響最終成果精度的因素,這使得探索誤差來源及其影響程度成為一項複雜的挑戰。因此,此研究的目的是利用理論公式討論地表變形和對流層延遲對最終地形產品的影響。為了減輕全相位回復誤差的影響,此研究在InSAR處理過程中額外套用相干值門檻。因此,使用相干值門檻的有效性是在誤差分析的討論之外的另一個主題。
研究結果顯示,相干值門檻的應用可以幫助約89%的像對提高計算地形的準確性。 此外,隨著門檻值的提升,全相位回復錯誤的發生顯著減少。然而,相干值門檻如何影響全相位回復步驟的確切原因仍然是一個問題。在河流和丘陵等低相干區域很難觀察到相門檻值的一致影響,然而在高相干值區域的影響明顯較小。在回歸分析中,雖然某些單個圖像對中可以觀察到顯著的相關性,但是當所有像對合併進行分析時,相關性即變得非常小。除此之外,相關性的一些符號與理論假設相矛盾。
摘要(英) Interferometric Synthetic Aperture Radar (InSAR) is known as a useful technique for monitoring earth surface. One of the common applications is topography mapping. For a repeat-pass spaceborne radar system, conventional InSAR approach is limited in achieving high vertical accuracy owning to its inherent properties, such as different sorts of decorrelation, atmospheric delays, scattering properties, surface deformation, and geometric distortion. These are factors that contaminate final results during the whole imaging system, which makes it a sophisticated challenge to explore the drivers and their exact influences. The aim of this work is to discuss the impact from surface deformation and tropospheric delays on end topography products based on mathematic description. In order to alleviate the influence of phase unwrapping error, coherence masks are applied during InSAR processing. Therefore, the effectiveness of coherence masks is also one topic that is concerned in this research in addition to the discussion of the error analysis.
The result has shown that the application of coherence mask can improve the accuracy of measured heights for about 89% image pairs in our experiments. Also, the occurrence of phase unwrapping errors can be significantly reduced as the threshold increases. However, the precise reason for how coherence mask influence phase unwrapping remains a question. It is difficult to observe a consistent influence of coherence thresholds in low coherence areas, such as rivers and hills, while the influence in high coherence area is subtle. In error regression analysis, some significant correlations between the errors and the two considered error sources, refractivity and deformation. The relationship between the errors and deformation is stronger than that with refractivity. Although the relationship in the experiment does not meet the expectation built from the derived mathematical description, the work has constructed a reasonable theoretical relationship and conducted a preliminary attempt to fit the relationship in reality.
關鍵字(中) ★ 合成孔徑雷達
★ 哨兵一號
★ 產製地形圖
★ 誤差分析
關鍵字(英) ★ SAR
★ Sentinel-1
★ DEM generation
★ Error Analysis
論文目次 Contents
摘 要 I
Abstract II
List of Figures V
List of Tables X
Chapter 1 1
1.1 Motivation 1
1.2 Research Objectives 3
1.3 Research Limitation 3
1.4 Thesis Structure 6
Chapter 2 7
2.1 SAR 7
2.2 InSAR Technique Overview 9
2.2.1. Background 9
2.2.2. Interferometric Information 10
2.2.3. Imaging Geometry 10
2.2.4. Optimal Geometry for Topography Mapping 11
2.3 Topography Mapping 13
2.3.1 Different Topography Mapping Methods 13
2.3.2 Procedures for Topography Mapping in SNAP 15
2.4 Error Analysis Studies 24
2.5 Parameters 25
2.5.1 Tropospheric Delay 26
2.5.2 Surface Deformation 34
Chapter 3 36
3.1 Research Frame Work 36
3.2 Coherence Mask 39
3.2.1 Background 39
3.2.2 Processing Workflow 40
3.3 Formula for Error Analysis 41
3.4 Theoretical Physical Relationship 45
3.5 Elevation System Conversion 48
3.6 Software 49
Chapter 4 50
4.1 Study Site 50
4.2 Sentinel-1 Imagery 51
4.3 Refractivity Index 56
4.3.1 Background 56
4.3.2 Data Source 59
4.3.3 Data Validation 60
4.3.4 Data Demonstration 64
4.4 GPS Observation Data 73
4.4.1 Background 73
4.4.2 Data Source 77
4.4.3 Vertical Displacement to Line of Sight Displacement 79
4.5 Sensitivity Analysis 79
Chapter 5 87
5.1 Coherence Threshold 87
5.1.1 Goldstein Filtering 87
5.1.2 Experimental Design for Coherence Mask 92
5.1.3 Image interpretation 94
5.1.4 Numerical Results 104
5.2 Error Regression Analysis 115
5.2.1 Visual Comparison 115
5.2.2 Numerical Results 119
Chapter 6 125
6.1 Coherence Threshold 125
6.2 Regression Analysis 125
6.3 Future Work 127
Reference 129
參考文獻 Bamler, R., Hartl, P., 1998. Synthetic aperture radar interferometry. Inverse problems 14, R1.
Barat, I., Prats-Iraola, P., Duesmann, B., Geudtner, D., 2015. Sentinel-1: link between orbit control and interferometric SAR baselines performance, 25th International Symposium on Space Flight Dynamics, pp. 19-23.
Bean, B.R., Dutton, E., 1966. Radio meteorology. Superintendentof Documents, US GovernmentPrint. Office.
Berardino, P., Fornaro, G., Lanari, R., Sansosti, E., 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on geoscience and remote sensing 40, 2375-2383.
Bevis, M., Businger, S., Herring, T.A., Rocken, C., Anthes, R.A., Ware, R.H., 1992. GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. Journal of Geophysical Research: Atmospheres 97, 15787-15801.
Bock, Y., Williams, S., 1997. Integrated satellite interferometry in southern California. Eos, Transactions American Geophysical Union 78, 293-300.
Braun, A., 2019. Radar satellite imagery for humanitarian response. Bridging the gap between technology and application. Universität Tübingen.
Braun, A., 2020. DEM Generation with Sentinel-1 Workflow and Challenges. SkyWatch Space Applications Inc.: Waterloo, ON, Canada.
Braun, A., 2021. Retrieval of digital elevation models from Sentinel-1 radar data–open applications, techniques, and limitations. Open Geosciences 13, 532-569.
Braun, A., Veci, L., 2020. TOPS Interferometry Tutorial. Array Systems. Available online: http://step. esa. int/docs/tutorials/S1TBX% 20TOPSAR% 20Interferometry% 20with% 20Sentinel-1% 20Tutorial_v2. pdf (accessed February 2020).
Briole, P., Massonnet, D., Delacourt, C., 1997. Post‐eruptive deformation associated with the 1986–87 and 1989 lava flows of Etna detected by radar interferometry. Geophysical Research Letters 24, 37-40.
Bürgmann, R., Rosen, P.A., Fielding, E.J., 2000. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annual review of earth and planetary sciences 28, 169-209.
Campbell, J.B., Wynne, R.H., 2011. Introduction to remote sensing. Guilford Press.
Central Geological Survey, Taiwan′s horizontal velocity field and potential map of fault activity, retrieved June 20th, 2021, from https://fault.moeacgs.gov.tw/MgFault/images/PDF/CGS_GPS.pdf
Chen, C.W., Zebker, H.A., 2002. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Transactions on Geoscience and Remote Sensing 40, 1709-1719.
Chen, H. Y., 2020. Establishing an Automated GPS Processing and Analysis System to Provide an On-line Service for the Earth Sciences Research.
Chen, K.-H., Yang, M., Huang, Y.-T., Ching, K.-E., Rau, R.-J., 2011. Vertical displacement rate field of Taiwan from geodetic levelling data 2000-2008. Survey Review 43, 296-302.
Ching, K. N., 2018. Surface Deformation Observation Data Processing Analysis and Fault Model Inversion Evaluation.
Ching, K. N., 2019. Observation of Fault Activity(Ⅳ): Surface Deformation Analysis from Geodetic Data and Establishment of Fault Models (3/4).
COSiS (CWB observation Data Inquire System), Ground observation data inquiry platform, retrieved October 19th, 2020, from https://e-service.cwb.gov.tw/HistoryDataQuery/.
Cutrona, L., Leith, E.N., Porcello, L., Vivian, W., 1966. On the application of coherent optical processing techniques to synthetic-aperture radar. Proceedings of the IEEE 54, 1026-1032.
Dehecq, A., Millan, R., Berthier, E., Gourmelen, N., Trouvé, E., Vionnet, V., 2016. Elevation changes inferred from TanDEM-X data over the Mont-Blanc area: Impact of the X-band interferometric bias. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9, 3870-3882.
Ding, X.-l., Li, Z.-w., Zhu, J.-j., Feng, G.-c., Long, J.-p., 2008. Atmospheric effects on InSAR measurements and their mitigation. Sensors 8, 5426-5448.
Doin, M.-P., Lasserre, C., Peltzer, G., Cavalié, O., Doubre, C., 2009. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models. Journal of Applied Geophysics 69, 35-50.
Elliott, J.R., Biggs, J., Parsons, B., Wright, T., 2008. InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophysical Research Letters 35.
ESA, 2020. S1TBX – ESA Sentinel-1 Toolbox, retrieved 13th, April 2021, from http://step.esa.int/main/download/snap-download/
Fahnestock, M., Bindschadler, R., Kwok, R., Jezek, K., 1993. Greenland ice sheet surface properties and ice dynamics from ERS-1 SAR imagery. Science 262, 1530-1534.
Feigl, K.L., Sergent, A., Jacq, D., 1995. Estimation of an earthquake focal mechanism from a satellite radar interferogram: application to the December 4, 1992 Landers aftershock. Geophysical Research Letters 22, 1037-1040.
Ferretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F., 2007. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation, 19 vols. The Netherlands: ESA Publications.
Ferretti, A., Prati, C., Rocca, F., 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on geoscience and remote sensing 38, 2202-2212.
Foster, J., Brooks, B., Cherubini, T., Shacat, C., Businger, S., Werner, C., 2006. Mitigating atmospheric noise for InSAR using a high resolution weather model. Geophysical Research Letters 33.
Fowler, R., 2001. Topographic lidar. Digital elevation model technologies and applications: the DEM users manual, 207-236.
Gabriel, A.K., Goldstein, R.M., 1988. Crossed orbit interferometry: theory and experimental results from SIR-B. International Journal of Remote Sensing 9, 857-872.
Gabriel, A.K., Goldstein, R.M., Zebker, H.A., 1989. Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research: Solid Earth 94, 9183-9191.
Gens, R., VAN GENDEREN, J.L., 1996. Review Article SAR interferometry—issues, techniques, applications. International Journal of Remote Sensing 17, 1803-1835.
Geudtner, D., Torres, R., Snoeij, P., Davidson, M., Rommen, B., 2014. Sentinel-1 system capabilities and applications, 2014 IEEE Geoscience and Remote Sensing Symposium. IEEE, pp. 1457-1460.
Ghiglia, D.C., Pritt, M.D., 1998. Two-dimensional phase unwrapping: theory, algorithms, and software. Wiley New York.
Goldstein, R., 1995. Atmospheric limitations to repeat‐track radar interferometry. Geophysical research letters 22, 2517-2520.
Goldstein, R.M., Engelhardt, H., Kamb, B., Frolich, R.M., 1993. Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science 262, 1525-1530.
Goldstein, R.M., Werner, C.L., 1998. Radar interferogram filtering for geophysical applications. Geophysical research letters 25, 4035-4038.
Goldstein, R.M., Zebker, H., 1987. Interferometric radar measurement of ocean surface currents. Nature 328, 707-709.
Goldstein, R.M., Zebker, H.A., Werner, C.L., 1988. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio science 23, 713-720.
Graham, L.C., 1974. Synthetic interferometer radar for topographic mapping. Proceedings of the IEEE 62, 763-768.
Hanssen, R., Feijt, A., 1997. A first quantitative evaluation of atmospheric effects on SAR interferometry, ERS SAR Interferometry, p. 277.
Hanssen, R.F., 1998. Atmospheric heterogeneities in ERS tandem SAR interferometry. Delft University Press.
Hanssen, R.F., 2001. Radar interferometry: data interpretation and error analysis. Springer Science & Business Media.
Hanssen, R.F., Weckwerth, T.M., Zebker, H.A., Klees, R., 1999. High-resolution water vapor mapping from interferometric radar measurements. Science 283, 1297-1299.
Hogg, D., Guiraud, F., Decker, M., 1981. Measurement of excess radio transmission length on earth-space paths. Astronomy and Astrophysics 95, 304-307.
Hopfield, H.S., 1971. Tropospheric effect on electromagnetically measured range: Prediction from surface weather data. Radio science 6, 357-367.
Hu, J.-C., Yu, S.-B., Chu, H.-T., Angelier, J., 2002. Transition tectonics of northern Taiwan induced by convergence and trench retreat. Special Papers-Geological Society of America, 147-160.
Hu, J., Li, Z., Ding, X., Zhu, J., Zhang, L., Sun, Q., 2014. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Science Reviews 133, 1-17.
Huang, R.X., 2004. Ocean, energy flows in. Encyclopedia of Energy 4, 497-509.
Huising, E.J., Pereira, L.G., 1998. Errors and accuracy estimates of laser data acquired by various laser scanning systems for topographic applications. ISPRS Journal of photogrammetry and remote sensing 53, 245-261.
Itoh, K., 1982. Analysis of the phase unwrapping algorithm. Applied optics 21, 2470-2470.
Janssen, V., Ge, L., Rizos, C., 2004. Tropospheric corrections to SAR interferometry from GPS observations. GPS solutions 8, 140-151.
Jensen, H., Graham, L., Porcello, L.J., Leith, E.N., 1977. Side-looking airborne radar. Scientific American 237, 84-95.
Jolivet, R., Grandin, R., Lasserre, C., Doin, M.P., Peltzer, G., 2011. Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophysical Research Letters 38.
Kavzoglu, T., Saka, M., 2005. Modelling local GPS/levelling geoid undulations using artificial neural networks. Journal of geodesy 78, 520-527.
Kovács, I., Bugya, T., Czigány, S., Defilippi, M., Lóczy, D., Riccardi, P., Ronczyk, L., Pasquali, P., 2019. How to avoid false interpretations of Sentinel-1A TOPSAR interferometric data in landslide mapping? A case study: Recent landslides in Transdanubia, Hungary. Natural Hazards 96, 693-712.
Kursinski, E., Hajj, G., Schofield, J., Linfield, R., Hardy, K.R., 1997. Observing Earth′s atmosphere with radio occultation measurements using the Global Positioning System. Journal of Geophysical Research: Atmospheres 102, 23429-23465.
Lanari, R., Mora, O., Manunta, M., Mallorquí, J.J., Berardino, P., Sansosti, E., 2004. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE transactions on geoscience and remote sensing 42, 1377-1386.
Leith, E.N., Ingalls, A., 1968. Synthetic antenna data processing by wavefront reconstruction. Applied optics 7, 539-544.
Li, F.K., Goldstein, R.M., 1990. Studies of multibaseline spaceborne interferometric synthetic aperture radars. IEEE Transactions on Geoscience and Remote Sensing 28, 88-97.
Li, Z., 2005. Correction of atmospheric water vapour effects on repeat-pass SAR interferometry using GPS, MODIS and MERIS data. University of London.
Li, Z., Fielding, E.J., Cross, P., Muller, J.P., 2006a. Interferometric synthetic aperture radar atmospheric correction: GPS topography‐dependent turbulence model. Journal of Geophysical Research: Solid Earth 111.
Li, Z., Fielding, E.J., Cross, P., Muller, J.P., 2006b. Interferometric synthetic aperture radar atmospheric correction: medium resolution imaging spectrometer and advanced synthetic aperture radar integration. Geophysical Research Letters 33.
Li, Z., Muller, J.P., Cross, P., Albert, P., Fischer, J., Bennartz, R., 2006c. Assessment of the potential of MERIS near‐infrared water vapour products to correct ASAR interferometric measurements. International Journal of Remote Sensing 27, 349-365.
Li, Z., Muller, J.P., Cross, P., Fielding, E.J., 2005. Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR integration. Journal of Geophysical Research: Solid Earth 110.
Liao, W.-T., Tseng, K.-H., Lee, I.-T., Liibusk, A., Lee, J.-C., Liu, J.-Y., Chang, C.-P., Lin, Y.-C., 2020. Sentinel-1 interferometry with ionospheric correction from global and local TEC maps for land displacement detection in Taiwan. Advances in Space Research 65, 1447-1465.
Liu, C.-Y., Kuo, S.-C., Lim, A.H., Hsu, S.-C., Tseng, K.-H., Yeh, N.-C., Yang, Y.-C., 2016. Optimal use of space-borne advanced infrared and microwave soundings for regional numerical weather prediction. Remote Sensing 8, 816.
Liu, S., Hanssen, R., Mika, Á., 2009. On the value of high-resolution weather models for atmospheric mitigation in SAR interferometry, 2009 IEEE International Geoscience and Remote Sensing Symposium. IEEE, pp. II-749-II-752.
Löfgren, J.S., Björndahl, F., Moore, A.W., Webb, F.H., Fielding, E.J., Fishbein, E.F., 2010. Tropospheric correction for InSAR using interpolated ECMWF data and GPS zenith total delay from the Southern California integrated GPS network, 2010 IEEE International Geoscience and Remote Sensing Symposium. IEEE, pp. 4503-4506.
Lu, C.-H., Bovenga, F., Yen, J.-Y., Chang, C.-P., 2018. Analysis of the 2018 Hualien earthquake (Taiwan) by using SAR interferometry and pixel offset techniques, Active and Passive Microwave Remote Sensing for Environmental Monitoring II. International Society for Optics and Photonics, p. 107880K.
Ma, K.F., Lee, C.T., Tsai, Y.B., Shin, T.C., Mori, J., 1999. The Chi‐Chi, Taiwan earthquake: Large surface displacements on an inland thrust fault. Eos, Transactions American Geophysical Union 80, 605-611.
Massonnet, D., Briole, P., Arnaud, A., 1995. Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature 375, 567-570.
Massonnet, D., Feigl, K., Rossi, M., Adragna, F., 1994. Radar interferometric mapping of deformation in the year after the Landers earthquake. Nature 369, 227-230.
Massonnet, D., Feigl, K.L., 1995. Discrimination of geophysical phenomena in satellite radar interferograms. Geophysical research letters 22, 1537-1540.
Massonnet, D., Holzer, T., Vadon, H., 1997. Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry. Geophysical research letters 24, 901-904.
Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., Rabaute, T., 1993. The displacement field of the Landers earthquake mapped by radar interferometry. nature 364, 138-142.
Mercer, B., 2004. DEMs created from airborne IFSAR–an update. International Archives of Photogrammetry and Remote Sensing 35.
Mercer, J.B., 1995. SAR technologies for topographic mapping, In D. Fritsch and D. Hobbie,(Eds.), Photogrammetric Week. Citeseer.
National Development Council, 2016. Ministry of Interior 20-meter grid numerical terrain model data, retrieved June 1st, 2019, from https://data.gov.tw/dataset/35430
Nelson, A., Reuter, H., Gessler, P., 2009. DEM production methods and sources. Developments in soil science 33, 65-85.
Norheim, R., Queija, V., Haugerud, R., 2002. Comparison of LIDAR and INSAR DEMs with dense ground control, Proceedings, 2002 ESRI International User Conference: San Diego, California.
Onn, F., Zebker, H., 2006. Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network. Journal of Geophysical Research: Solid Earth 111.
Organisation météorologique, m., 1992. International meteorological vocabulary. Secretariat of the World Meteorological Organization, Geneva.
Porcello, L.J., Massey, N.G., Innes, R.B., Marks, J.M., 1976. Speckle reduction in synthetic-aperture radars. JOSA 66, 1305-1311.
Puysségur, B., Michel, R., Avouac, J.P., 2007. Tropospheric phase delay in interferometric synthetic aperture radar estimated from meteorological model and multispectral imagery. Journal of Geophysical Research: Solid Earth 112.
Raymond, D., Rudant, J.-P., 1997. ERS-SAR interferometry: Potential and limits for mining subsidence detection. EUROPEAN SPACE AGENCY-PUBLICATIONS-ESA SP 414, 541-544.
Resch, G., 1984. Water vapor radiometry in geodetic applications, Geodetic Refraction. Springer, pp. 53-84.
Richards, M.A., 2007. A beginner′s guide to interferometric SAR concepts and signal processing [aess tutorial iv]. IEEE Aerospace and Electronic Systems Magazine 22, 5-29.
Richman, D., 1982. Three dimensional, azimuth-correcting mapping radar. Google Patents.
Rodriguez, E., Martin, J., 1992. Theory and design of interferometric synthetic aperture radars, IEE Proceedings F (Radar and Signal Processing). IET, pp. 147-159.
Rodriguez, E., Morris, C.S., Belz, J.E., 2006. A global assessment of the SRTM performance. Photogrammetric Engineering & Remote Sensing 72, 249-260.
Rogers, A., Ingalls, R., 1969. Venus: Mapping the surface reflectivity by radar interferometry. Science 165, 797-799.
Rosen, P.A., Hensley, S., Zebker, H.A., Webb, F.H., Fielding, E.J., 1996. Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR‐C radar interferometry. Journal of Geophysical Research: Planets 101, 23109-23125.
Saastamoinen, J., 1972. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. The use of artificial satellites for geodesy 15, 247-251.
Sandwell, D., Mellors, R., Tong, X., Wei, M., Wessel, P., 2011. Gmtsar: An insar processing system based on generic mapping tools.
Santoro, M., Wegmuller, U., Askne, J.I., 2009. Signatures of ERS–Envisat interferometric SAR coherence and phase of short vegetation: An analysis in the case of maize fields. IEEE Transactions on Geoscience and Remote Sensing 48, 1702-1713.
Sentinel-1 Team, 2013. Sentinel-1 User handbook, retrieved June 20th, 2021, from https://sedas.satapps.org/wp-content/uploads/2015/07/Sentinel-1_User_Handbook.pdf
Small, D., Pasquali, P., Fuglistaler, S., 1996. A comparison of phase to height conversion methods for SAR interferometry, IGARSS′96. 1996 International Geoscience and Remote Sensing Symposium. IEEE, pp. 342-344.
Smith, E.K., Weintraub, S., 1953. The constants in the equation for atmospheric refractive index at radio frequencies. Proceedings of the IRE 41, 1035-1037.
Tarayre, H., Massonnet, D., 1996. Atmospheric propagation heterogeneities revealed by ERS‐1 interferometry. Geophysical Research Letters 23, 989-992.
Thayer, G.D., 1974. An improved equation for the radio refractive index of air. Radio Science 9, 803-807.
Tung, H., Chen, H.-Y., 2018. Instant GPS analysis platform established for GPS data processing and observation results sharing, AGU Fall Meeting Abstracts, pp. G51D-0507.
Usai, S., 1997. The use of man-made features for long time scale INSAR, IGARSS′97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing-A Scientific Vision for Sustainable Development. IEEE, pp. 1542-1544.
Van Zyl, J.J., 2001. The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography. Acta Astronautica 48, 559-565.
Veci, L., 2015. TOPS Interferometry Tutorial. Sentinel-1 Toolbox.
Wadge, G., Webley, P., Stevens, N., 2003. Correcting InSAR data for tropospheric path effects over volcanoes using dynamic atmospheric models, Proceedings of the FRINGE 2003 Workshop (ESA SP-550), pp. 1-5.
Williams, S., Bock, Y., Fang, P., 1998. Integrated satellite interferometry: Tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products. Journal of Geophysical Research: Solid Earth 103, 27051-27067.
Wolf, J., 1985. Born again group testing: Multiaccess communications. IEEE Transactions on Information Theory 31, 185-191.
Wolf, P.R., Dewitt, B.A., Wilkinson, B.E., 2014. Elements of Photogrammetry with Applications in GIS. McGraw-Hill Education.
Wright, T., Fielding, E., Parsons, B., 2001. Triggered slip: observations of the 17 August 1999 Izmit (Turkey) earthquake using radar interferometry. Geophysical Research Letters 28, 1079-1082.
Wright, T.J., Parsons, B.E., Lu, Z., 2004. Toward mapping surface deformation in three dimensions using InSAR. Geophysical Research Letters 31.
Wu, C., 1976. A digital system to produce imagery from SAR data, Systems design driven by sensors, p. 968.
Yang, M., Chen, K.-H., Shiao, S.-W., 2003. A new height reference network in Taiwan. Survey review 37, 260-268.
Zebker, H.A., Goldstein, R.M., 1986. Topographic mapping from interferometric synthetic aperture radar observations. Journal of Geophysical Research: Solid Earth 91, 4993-4999.
Zebker, H.A., Rosen, P.A., Goldstein, R.M., Gabriel, A., Werner, C.L., 1994a. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. Journal of Geophysical Research: Solid Earth 99, 19617-19634.
Zebker, H.A., Rosen, P.A., Hensley, S., 1997. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. Journal of geophysical research: solid earth 102, 7547-7563.
Zebker, H.A., Villasenor, J., 1992. Decorrelation in interferometric radar echoes. IEEE Transactions on geoscience and remote sensing 30, 950-959.
Zebker, H.A., Werner, C.L., Rosen, P.A., Hensley, S., 1994b. Accuracy of topographic maps derived from ERS-1 interferometric radar. IEEE transactions on Geoscience and Remote Sensing 32, 823-836.
Zisk, S., 1972. A new, earth-based radar technique for the measurement of lunar topography. The moon 4, 296-306.
指導教授 任玄(Hsuan Ren) 審核日期 2021-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明