博碩士論文 108022603 詳細資訊

以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:
姓名 馬狄菈(Debora Truly Marpaung)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 衛星觀測大氣氣膠參數對北京都會區地表溫度之影響
(The Interactions of Aerosol Properties and Types with Land Surface Temperature from Satellite Observations in Beijing Megalopolis)
★ 應用經驗模態分解法在福衛五號遙測照像儀之相對輻射校正★ 福爾摩沙衛星五號遙測儀之在軌絕對輻射校正
★ 應用衛星資料及地理資訊系統在印尼BALURAN國家公園野生牛棲息地之測繪★ 利用MISR衛星資料反演陸地區域氣膠光學厚度和地表反射率
★ 衛星資料在臺灣地區西南氣流降雨估算之應用★ 結合MODIS與MISR觀測資料在氣膠單次散射反照率反演之應用
★ 結合衛星資料與建物資訊解析台北市空間發展與都市熱島效應之鏈結★ Landsat-7衛 星 資 料 反 演 都 市 大 氣 氣膠光學厚度之研究與應用
★ 對數常態分布在氣膠消光係數廓線擬合之應用★ 氣膠光學厚度與懸浮微粒濃度關係之探討及其在衛星觀測之應用
★ 地球同步衛星(Himawari-8)在逐時大氣氣膠光學厚度之反演與分析★ 同時輻射率定法在向日葵八號氣膠光學厚度反演之應用
★ 應用Landsat衛星影像探討越南河內都市化所致土地利用改變在都市熱島效應強度之影響★ 結合衛星與地面觀測資料在台中地區能見度與氣膠參數變化之分析
★ 福爾摩沙衛星五號遙測儀升空前後等化係數之率定★ 應用氣膠種類與垂直分布建立衛星氣膠光學厚度和PM濃度之關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 空氣汙染除了對人體健康有影響之外,通過改變不同比例的輻射量促使地表溫度(LST)變化,不僅在地表能量和水的物理過程中扮演了平衡,作為氣候變化中也發揮至關重要的作用。在過去十年,許多城市進入快速城市化的進展,導致能源不斷地被消耗造成空氣汙染的增加。許多空氣汙染與LST的研究再進行中,但對於氣膠散射/吸收特性的研究仍然不足。本研究以北京大都會帶為例,利用MODIS產品代表空氣汙染的氣膠特性分析與LST之間的相互作用。通過氣膠光學厚度 (AOD) 的一階和二階微分,在氣膠粒徑分布與吸收特性方面針對各種土地覆蓋/土地利用進行詳細探討。結果顯示,在城市、郊區、農村地區,隨著氣膠濃度上升,LST在夏季、冬季、春季都有下降的趨勢。然而,在區分氣膠類型後發現,生質燃燒 (BB) 與農村地區的LST以及每個次要地區的礦物粉塵 (BB) 皆呈現正相關,而人為汙染物 (AP) 則降低了進來太陽輻射的散射使地表溫度下降。結果也顯示,區分後的氣膠可以更清楚的理解與量化氣膠對地表溫度和城市熱島強度變化的影響。這些發現可以用於改善預測的氣候模型與環境可適性、氣候變化以及生態系統的永續發展。
摘要(英) In addition to the human health impacts, air pollution also induces Land Surface Temperature (LST) which plays important roles as an essential climate variable in the physical processes of surface energy and water balance by altering the radiation proportion. In the last decade, many cities experienced rapid urbanization that made the increasing number of energy consumption which resulted in a severe air pollution. Many studies have been conducted to see the effect of air pollution on LST but still remain unclear due to the lack of aerosol scattering/absorption property. Taking the cases in Beijing megalopolis, this study aims to analyzing the interactions between aerosol properties which represents the air pollution and LST by using MODIS products. The detailed investigations have been examined in various land cover/ land use in terms of the aerosol particle size distribution and absorption properties through the first and second order derivatives of spectral aerosol optical depth (AOD). The result showed that LST has a decreasing tendency as the loading of aerosol increasing in summer, winter and spring season over urban, suburban and rural regions. However, after discriminating the aerosol type, it was found out that biomass burning (BB) type have positive correlation with LST in rural area as well as mineral must (DS) in every subset area while anthropogenic pollutant (AP) diminished the surface temperature by scattering the incoming solar radiation. The results also indicate that the discriminated aerosols can better understand and quantify the aerosol impact on the variations of land surface temperature and urban heat island intensity. These findings could be used for improving the weather model in forecast as well as adapting environment and climate change and the development of the sustainable ecosystem.
關鍵字(中) ★ : 地表溫度
★ 氣膠特性
★ 氣膠性的區別
★ 都市熱島強度
論文目次 中文摘要 i
Table of Contents iv
List of Figures vi
List of Tables vii
Chapter 1 1
1.1 Background 1
1.2 Research Problem and Objectives 4
1.3 Thesis Outline 4
Chapter 2 5
2.1 Land Cover 5
2.1.1 Definition of Land Cover 5
2.1.2 Land cover classification 6
2.2 Land Surface Temperature 7
2.2.1 Definition and the importance of land surface temperature 7
2.2.2 MODIS LST Product 8
2.3 Aerosol Properties 9
2.3.1 Aerosol properties description 9
2.3.2 MODIS AOD product 12
2.4 ArcGIS Software 13
Chapter 3 15
3.1 Study Area and Datasets 15
3.1.1 Study Area 15
3.1.2 Datasets 17
3.2 Methodology 18
3.2.1 Workflow 18
3.3.2 Land Cover Classification Method 19
3.3.3 Aerosol Type Discrimination 22
3.3.4 Urban Heat Island (UHI) Intensity 25
Chapter 4 27
4.1 Land Cover Classification Map 27
4.2 Spatial Distribution and Evaluation of MODIS LST and AOD product 30
4.3 Trend of LST over AOD in various seasons 37
4.4 Trend of LST over aerosol type in various seasons 39
4.5 The aerosol impact on Urban Heat Island (UHI) intensity 43
Chapter 5 46
5.1 Conclusion 46
5.2 Limitation and Future Works 47
參考文獻 Abdelkareem, O. E. A., Elamin, H. M. A., Eltahir, M. E. S., Adam, H. E., Elhaja, M. E., Rahamtalla, A. M., Babatunde, O., & Elmar, C. (2018). Accuracy assessment of land use land cover in Umabdalla natural reserved forest , South Kordofan, Sudan. International Journal of Agricultural and Environmental Sciences, 3(1), 5–9.
Al-Dousari, A., Al Hamoud, A., Ahmed, M., & Al-Dousari, N. (2019). Sand and dust storms (SDS): Types, characteristics, and indications. E3S Web of Conferences, 99, 4–6. https://doi.org/10.1051/e3sconf/20199901010
Aplin, P. (2004). Remote sensing: Land cover. Progress in Physical Geography, 28(2), 283–293. https://doi.org/10.1191/0309133304pp413pr
Chen, X., Ding, J., Liu, J., Wang, J., Ge, X., Wang, R., & Zuo, H. (2021). Validation and comparison of high-resolution MAIAC aerosol products over Central Asia. Atmospheric Environment, 251(March), 118273. https://doi.org/10.1016/j.atmosenv.2021.118273
Cheng, L., Zhang, T., Chen, L., Li, L., Wang, S., Hu, S., Yuan, L., Wang, J., & Wen, M. (2020). Investigating the impacts of urbanization on pm2.5 pollution in the yangtze river delta of china: A spatial panel data approach. Atmosphere, 11(10), 1–17. https://doi.org/10.3390/atmos11101058
Cho Cheung, H., Chung-Kuang Chou, C., Siu Lan Lee, C., Kuo, W. C., & Chang, S. C. (2020). Hygroscopic properties and cloud condensation nuclei activity of atmospheric aerosols under the influences of Asian continental outflow and new particle formation at a coastal site in eastern Asia. Atmospheric Chemistry and Physics, 20(10), 5911–5922. https://doi.org/10.5194/acp-20-5911-2020
Environmental Protection Agency. (2011). Urban Heat Island Basics. Reducing Urban Heat Islands: Compendium of Strategies, 1–22.
Feizizadeh, B., & Blaschke, T. (2012). Thermal remote sensing for land surface temperature monitoring: Maraqeh County, Iran. International Geoscience and Remote Sensing Symposium (IGARSS), June 2014, 2217–2220. https://doi.org/10.1109/IGARSS.2012.6350808
Gregorio, A. di, Jaffrain, G., & Weber, J.-L. (2011). Land cover classification for ecosystem accounting Prepared. Meta, 3, 1–29.
Guan, Q., Sun, X., Yang, J., Pan, B., Zhao, S., & Wang, L. (2017). Dust storms in northern China: Long-term spatiotemporal characteristics and climate controls. Journal of Climate, 30(17), 6683–6700. https://doi.org/10.1175/JCLI-D-16-0795.1
Han, W., Li, Z., Wu, F., Zhang, Y., Guo, J., Su, T., Cribb, M., Fan, J., Chen, T., Wei, J., & Lee, S. S. (2020). The mechanisms and seasonal differences of the impact of aerosols on daytime surface urban heat island effect. Atmospheric Chemistry and Physics, 20(11), 6479–6493. https://doi.org/10.5194/acp-20-6479-2020
Harrison, S. P., Kohfeld, K. E., Roelandt, C., & Claquin, T. (2001). The role of dust in climate changes today, at the last glacial maximum and in the future. Earth-Science Reviews, 54(1–3), 43–80. https://doi.org/10.1016/S0012-8252(01)00041-1
Hu, W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W., Wang, M., Wu, Y., Chen, C., Wang, Z., Peng, J., Zeng, L., & Shao, M. (2016). Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter. Journal of Geophysical Research, 121(4), 1955–1977. https://doi.org/10.1002/2015JD024020
Izuta, T. (2017). Air Pollution Impacts on Plants in East Asia. Air Pollution Impacts on Plants in East Asia, 1–322. https://doi.org/10.1007/978-4-431-56438-6
Kok, J. F., Ward, D. S., Mahowald, N. M., & Evan, A. T. (2018). Global and regional importance of the direct dust-climate feedback. Nature Communications, 9(1). https://doi.org/10.1038/s41467-017-02620-y
Li, H., Sodoudi, S., Liu, J., & Tao, W. (2020). Temporal variation of urban aerosol pollution island and its relationship with urban heat island. Atmospheric Research, 241(March). https://doi.org/10.1016/j.atmosres.2020.104957
Li, S., Xiang-Ao, X., Pu-Cai, W., Hong-Bin, C., Goloub, P., & Wen-Xing, Z. (2013). Identification of Aerosol Types and Their Optical Properties in the North China Plain Based on Long-Term AERONET Data. Atmospheric and Oceanic Science Letters, 6(4), 216–222. https://doi.org/10.3878/j.issn.1674-2834.13.0028
Li, Z. L., Tang, B. H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., & Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131(June 2014), 14–37. https://doi.org/10.1016/j.rse.2012.12.008
Li, Z. L., Tang, B. H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., & Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14–37. https://doi.org/10.1016/j.rse.2012.12.008
Lin, T. H., Tsay, S. C., Lien, W. H., Lin, N. H., & Hsiao, T. C. (2021). Spectral derivatives of optical depth for partitioning aerosol type and loading. Remote Sensing, 13(8), 10–13. https://doi.org/10.3390/rs13081544
Mutiibwa, D., Strachan, S., & Albright, T. (2015). Land Surface Temperature and Surface Air Temperature in Complex Terrain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(10), 4762–4774. https://doi.org/10.1109/JSTARS.2015.2468594
Nazarov, B. I., Abdullaev, S. F., & Maslov, V. A. (2010). Studies of temperature effects of dust storms. Izvestiya - Atmospheric and Ocean Physics, 46(4), 475–481. https://doi.org/10.1134/S0001433810040067
Ou, Y., Zhao, W., Wang, J., Zhao, W., & Zhang, B. (2017). Characteristics of aerosol types in Beijing and the associations with air pollution from 2004 to 2015. Remote Sensing, 9(9), 1–19. https://doi.org/10.3390/rs9090898
Park, M.-S., & Park, S.-U. (2014). An improved dust emission model with insights into the global dust cycle’s climate sensitivity. Atmospheric Chemistry and Physics Discussions, 14(5), 6361–6425. https://doi.org/10.5194/acpd-14-6361-2014
Persad, G. G., Paynter, D. J., Ming, Y., & Ramaswamy, V. (2017). Competing atmospheric and surface-driven impacts of absorbing aerosols on the East Asian summertime climate. Journal of Climate, 30(22), 8929–8949. https://doi.org/10.1175/JCLI-D-16-0860.1
R.Anderson, & E.Hardy, E. (1976). Land Use Definitions Remote Sensor Data. 57.
Rwanga, S. S., & Ndambuki, J. M. (2017). Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS. International Journal of Geosciences, 08(04), 611–622. https://doi.org/10.4236/ijg.2017.84033
Schwarz, N., Schlink, U., Franck, U., & Großmann, K. (2012). Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators - An application for the city of Leipzig (Germany). Ecological Indicators, 18, 693–704. https://doi.org/10.1016/j.ecolind.2012.01.001
Sciences, O., & Kok, J. F. (2018). The physics of dust emission (and how to parameterize it in atmospheric models).
Solanky, V., Singh, S., & Katiyar, S. K. (2018). Land Surface Temperature Estimation Using Remote Sensing Data. April 2019, 343–351. https://doi.org/10.1007/978-981-10-5801-1_24
Sorichetta, A., Nghiem, S. V., Masetti, M., Linard, C., & Richter, A. (2020). Transformative Urban changes of Beijing in the decade of the 2000s. Remote Sensing, 12(4). https://doi.org/10.3390/rs12040652
Sun, Y., Zhuang, G., Wang, Y., Zhao, X., Li, J., Wang, Z., & An, Z. (2005). Chemical composition of dust storms in Beijing and implications for the mixing of mineral aerosol with pollution aerosol on the pathway. Journal of Geophysical Research Atmospheres, 110(24), 1–11. https://doi.org/10.1029/2005JD006054
Tomasi, C., & Lupi, A. (2016). Primary and Secondary Sources of Atmospheric Aerosol. Atmospheric Aerosols, 1–86. https://doi.org/10.1002/9783527336449.ch1
Wang, Z., Jaime, N., & Román, M. (2019). Committee on Earth Observation Satellites Working Group on Calibration and Validation Land Product Validation Subgroup Global Surface Albedo Product Validation Best Practices Protocol. January, 0–227. https://doi.org/10.5067/doc/ceoswgcv/lpv/lst.001
Wei, X., Chang, N. Bin, Bai, K., & Gao, W. (2020). Satellite remote sensing of aerosol optical depth: advances, challenges, and perspectives. Critical Reviews in Environmental Science and Technology, 50(16), 1640–1725. https://doi.org/10.1080/10643389.2019.1665944
Wu, H., Wang, T., Riemer, N., Chen, P., Li, M., & Li, S. (2017). Urban heat island impacted by fine particles in Nanjing, China. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-11705-z
Wu, H., Wang, T., Wang, Q., Riemer, N., Cao, Y., Liu, C., Ma, C., & Xie, X. (2019). Relieved air pollution enhanced urban heat island intensity in the Yangtze river delta, China. Aerosol and Air Quality Research, 19(12), 2683–2696. https://doi.org/10.4209/aaqr.2019.02.0100
Wu, J., Fu, C., Han, Z., Tang, J., Xu, Y., & Zhang, R. (2010). Simulation of the direct effects of dust aerosol on climate in East Asia. Particuology, 8(4), 301–307. https://doi.org/10.1016/j.partic.2010.01.006
Wu, Z. J., Cheng, Y. F., Hu, M., Wehner, B., Sugimoto, N., & Wiedensohler, A. (2009). Dust events in Beijing, China (2004-2006): Comparison of ground-based measurements with columnar integrated observations. Atmospheric Chemistry and Physics, 9(18), 6915–6932. https://doi.org/10.5194/acp-9-6915-2009
Xiao, R., Weng, Q., Ouyang, Z., Li, W., Schienke, E. W., & Zhang, Z. (2008). Land surface temperature variation and major factors in Beijing, China. Photogrammetric Engineering and Remote Sensing, 74(4), 451–461. https://doi.org/10.14358/PERS.74.4.451
Xie, S., Zhang, Y., Qi, L., & Tang, X. (2005). Characteristics of air pollution in Beijing during sand-dust storm periods. Water, Air, and Soil Pollution: Focus, 5(3–6), 217–229. https://doi.org/10.1007/s11267-005-0737-9
Xie, S., Zhang, Y., Qi, L., & Tang, X. (2005). Characteristics of air pollution in Beijing during sand-dust storm periods. Water, Air, and Soil Pollution: Focus, 5(3–6), 217–229. https://doi.org/10.1007/s11267-005-0737-9
Yang, C., Yan, F., Lei, X., Ding, X., Zheng, Y., Liu, L., & Zhang, S. (2020). Investigating seasonal effects of dominant driving factors on urban land surface temperature in a snow-climate city in China. Remote Sensing, 12(18). https://doi.org/10.3390/RS12183006
Yang, C., Yan, F., & Zhang, S. (2020). Comparison of land surface and air temperatures for quantifying summer and winter urban heat island in a snow climate city. Journal of Environmental Management, 265(April), 110563. https://doi.org/10.1016/j.jenvman.2020.110563
Yang, Y., Zheng, Z., Yim, S. Y. L., Roth, M., Ren, G., Gao, Z., Wang, T., Li, Q., Shi, C., Ning, G., & Li, Y. (2020). PM2.5 Pollution Modulates Wintertime Urban Heat Island Intensity in the Beijing-Tianjin-Hebei Megalopolis, China. Geophysical Research Letters, 47(1). https://doi.org/10.1029/2019GL084288
Yang, Z., Cai, J., Ottens, H. F. L., & Sliuzas, R. (2013). Beijing. Cities, 31, 491–506. https://doi.org/10.1016/j.cities.2011.07.007
Zhang, R., Arimoto, R., An, J., Yabuki, S., & Sun, J. (2005). Ground observations of a strong dust storm in Beijing in March 2002. Journal of Geophysical Research D: Atmospheres, 110(18), 1–8. https://doi.org/10.1029/2004JD004589
Zhao-Lianggli, H. (n.d.). Springer Remote Sensing/Photogrammetry Quantitative Remote Sensing in Thermal Infrared Theory and Applications. http://www.springer.com/series/10182
指導教授 林唐煌(Tang-Huang Lin) 審核日期 2021-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明