博碩士論文 108222013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.138.116.20
姓名 葉智翔(Chih-Hsiang Yeh)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Toward discovering the low-mass dark matter: Constraints on Searches of Low-mass Weakly Interacting Massive Particle (WIMP) with Earth Attenuation Effect incorporated && Exploring the physics of germanium internal amplification for low-energy detection)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文即將介紹兩個不同方向的探測低質量暗物質的研究計畫。第一個計畫是研究有關於地球衰減效應對於實驗站觀測暗物質的影響。此計畫使用了來自TEXONO以及CDEX實驗的數據,這兩個實驗站分別位於地表上存放核反應爐的建築物裡,以及地底下。而此實驗考慮了兩個近期新預測的交互作用效應,分別為米格達爾(Migdal)效應以及軔致輻射(Bremsstrahlung)效應,這樣的考慮允許實驗站可以量測到最低的暗物質質量為50MeV。而我們也發現對於不同的暗物質質量,由於兩個實驗分別被大氣層以及2.5公里的岩石覆蓋層,兩個實驗分別在範圍為${
m 10^{-26}}$至${
m 10^{-28}}$${
m cm^{2}}$以及${
m 10^{-28}}$至${
m 10^{-30}}$${
m cm^{2}}$的產生截面積之間達到了實驗能探測的交互作用強度上限。第二個計畫主要是文獻研究,目的在於理解鍺電離檢測器中信號放大的機制以及實驗的挑戰。這種新穎的探測器,可以將檢測器閾值降低一個數量級到10 eV 的範圍,從而打開搜索更低質量暗物質的新窗口。
摘要(英) Two research projects in separate directions related to the goals of discovering low-mass WIMP dark matter are presented in this thesis. The first project is on the studies of earth attenuation effects to WIMPs and how this may affect the experimental constraints. Analysis methods are applied to data recorded by the TEXONO and CDEX experiments, located in a reactor building on earth surface
and at an underground site, respectively. Constraints are derived with the newly-identified Migdal and bremsstrahlung effects taken into account which allows the probe of WIMP mass as low as 50MeV. It is found that WIMP-nucleon spin-independent cross-sections above the ones from ${
m 10^{-26}}$ to ${
m 10^{-28}}$${
m cm^{2}}$ and the ones from ${
m 10^{-28}}$ to ${
m 10^{-30}}$${
m cm^{2}}$ for different WIMP masses cannot be experimentally probed since the WIMPs are totally suppressed by the Earth′s atmosphere and by 2.5 km of rock overburden, respectively. The second project is on literature research which targets at the understanding of physical mechanisms and experimental challenges of achieving signal amplification in germanium ionization detectors at 4K and 77K. This novel detector concept, when successfully realized, allows reduction of detector threshold by an order of magnitude to the range of 10 eV, thereby opening new windows of light WIMP searches.
關鍵字(中) ★ 低質量暗物質
★ 地球衰減效應
★ 米格達爾效應
★ 軔致輻射效應
★ 鍺電離檢測器
★ 信號放大
關鍵字(英) ★ low-mass WIMP dark matter
★ earth attenuation effects
★ Migdal effect
★ bremsstrahlung effect
★ germanium ionization detectors
★ signal amplification
論文目次 1 Introduction
1.1 Motivation............................................1
1.2 A Brief Introduction to DM.............................2
1.2.1 Historic Evidences on Dark Matter...................2
1.2.2 Properties of DM and WIMP.....................6

2 Introduction to TEXONO and CDEX experiments 9
2.1 Experimental Setup for KSNL.........................10
2.2 HPGe Detectors.................................11
2.2.1 Configuration of Germanium Detector................12
2.2.2 Process of Generating Signal......................13
2.3 Passive Shielding................................14
2.4 Active Shielding.................................16
2.5 Event Selection for WIMPs...........................18
2.6 Data Preparation: L/M shells X-ray Subtraction...............22
2.7 Introduction to the CDEX experiment....................24

3 Analysis Strategies 27
3.1 Models for Inner-earth, Atmosphere and Shielding..............27
3.2 Three Types of Interaction Channels in the Detector.............31
3.2.1 χ−N Elastic Scattering........................31
3.2.2 Quenching Factor for the Germanium Detector...........33
3.2.3 χ−N Inelastic Scattering: Migdal Effect...............34
3.2.4 χ−N Inelastic Scattering: Bremsstrahlung.............34
3.3 Definition Clarifications............................35
3.4 Battleground for WIMPs: Exclusion Plot...................36
3.5 Vacuum-constrained Limits on WIMPs....................38

4 Results of Limits on WIMPs from Two Methods 43
4.1 Core: The Loop for an Interaction.......................43
4.2 Introduction to the CAT............................44
4.3 The Validation of the CAT...........................45
4.3.1 The Setup for the Simulation of Validation..............45
4.3.2 Results and Conclusion.........................47
4.4 Constraint on WIMPs with the CAT.....................48
4.4.1 Three-stage Blockage for the Earth Attenuation Effect........48
4.4.2 Velocity Distributions..........................49
4.4.3 Recoil Spectrum............................50
4.4.4 Sensitivity Line for Quantifying the Earth Attenuation Effect...........52
4.4.5 Earth-constrained Limits on WIMPs..................54
4.5 Introduction to the MAT............................57
4.6 The Study of the Systematic Error of the CAT with the MATS.......60
4.6.1 The Setup of the Simulation......................61
4.6.2 The Bridge between the CAT and the MAT.............62
4.6.3 The Results of the Systematic Error of the CAT............65

5 Extension: Low-threshold detector development 69
5.1 Introduction...................................69
5.2 A Brief Introduction of p-n Junction......................70
5.3 Signal Amplification..............................72
5.3.1 Necessary Electron-related Parameters:................72
5.3.2 Ionization Rate.............................74
5.3.3 Pioneer:Russian Investigation[2000]..................75
5.4 Noise in the Crystal...............................76
5.4.1 Bulk Leakage Current..........................77
5.4.2 Contact Leakage Current........................78
5.4.3 Surface Leakage Current.........................78
5.4.4 Summary for Three Currents......................80
5.5 Performance for the Detector.........................80
5.5.1 Working Model I for Gain.......................80
5.5.2 Working Model II for Gain.......................82
5.5.3 Electrical Breakdown..........................84
5.6 Unsolved Issues.................................86

6 Conclusion and Future Prospect 91
6.1 The Analysis with the Data from TEXONO..................91
6.2 The Development of Low-threshold Detector..................93
參考文獻 [1] M. C. Artale, S. E. Pedrosa, P. B. Tissera, P. Cataldi, and A. Di Cintio, “Dark matter response to galaxy assembly history,” Astronomy Astrophysics, vol. 622, p. A197, Feb 2019.
[2] V. Trimble, History of Dark Matter in Galaxies, pp. 1091–1118. Dordrecht: Springer Netherlands, 2013.
[3] S. Profumo, L. Giani, and O. F. Piattella, “An introduction to particle dark matter,” 2019.
[4] A. Boveia and C. Doglioni, “Dark matter searches at colliders,” Annual Review of Nuclear and Particle Science, vol. 68, p. 429–459, Oct 2018.
[5] V. A. Mitsou, “Overview of searches for dark matter at the LHC,” Journal of Physics: Conference Series, vol. 651, p. 012023, nov 2015.
[6] G. Arcadi, G. Busoni, T. Hugle, and V. T. Tenorth, “Comparing 2hdm + scalar and pseudoscalar simplified models at lhc,” Journal of High Energy Physics, vol. 2020, Jun 2020.
[7] S. Lowette, “Search for dark matter at cms,” Nuclear and Particle Physics Proceedings, vol. 273-275, pp. 503–508, 2016. 37th International Conference on High Energy Physics (ICHEP).
[8] B. T. Carlson, “Dark Matter searches with the ATLAS detector,” Aug 2020.
[9] J. Schieck, “Direct dark matter search with the cresst-ii experiment,” 2015.
[10] R. Bernabei, P. Belli, A. Bussolotti, F. Cappella, V. Caracciolo, R. Cerulli, C. Dai, A. d’ Angelo, A. Di Marco, and et al., “First model independent results from 95dama/libra-phase2,” Nuclear Physics and Atomic Energy, vol. 19, p. 307–325, Dec 2018.
[11] T. Emken and C. Kouvaris, “How blind are underground and surface detectors to strongly interacting dark matter?,” Phys. Rev. D, vol. 97, p. 115047, Jun 2018.
[12] B. J. Kavanagh, “Earth scattering of superheavy dark matter: Updated constraints from detectors old and new,” Physical Review D, vol. 97, Jun 2018.
[13] M. Ibe, W. Nakano, Y. Shoji, and K. Suzuki, “Migdal effect in dark matter direct detection experiments,” Journal of High Energy Physics, vol. 2018, Mar 2018.
[14] C. Kouvaris and J. Pradler, “Probing sub-gev dark matter with conventional detectors,” Phys. Rev. Lett., vol. 118, p. 031803, Jan 2017.
[15] A. Klypin, H. Zhao, and R. S. Somerville, “{upLambdaCDM-based models for the milky way and m31. i. dynamical models,” The Astrophysical Journal, vol. 573, pp. 597–613, jul 2002.
[16] V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, A. Jenkins, A. Helmi, J. F. Navarro, C. S. Frenk, and S. D. M. White, “The aquarius project: the subhaloes of galactic haloes,” Monthly Notices of the Royal Astronomical Society, vol. 391, p. 1685–1711, Dec 2008.
[17] M. Battaglieri, A. Belloni, A. Chou, P. Cushman, B. Echenard, R. Essig, J. Estrada, J. Feng, B. Flaugher, P. Fox, P. Graham, C. Hall, R. Harnik, J. Hewett, J. Incandela, E. Izaguirre, D. Mckinsey, M. Pyle, N. Roe, and Y.-M. Zhong, “Us cosmic visions: New ideas in dark matter 2017: Community report,” 07 2017.
[18] K. Kadota, T. Sekiguchi, and H. Tashiro, “A new constraint on millicharged dark matter from galaxy clusters,” 2016.
[19] V. A. Bednyakov, “Spin in the dark matter problem,” Phys. Part. Nucl., vol. 38, pp. 326–363, 2007.
[20] G. Jungman, M. Kamionkowski, and K. Griest, “Supersymmetric dark matter,” Physics Reports, vol. 267, p. 195–373, Mar 1996. 96
[21] A. D. Medina, “Higgsino-like dark matter from sneutrino late decays,” Physics Letters B, vol. 770, p. 161–165, Jul 2017.
[22] F. Zwicky, “Republication of: The redshift of extragalactic nebulae,” General Relativity and Gravitation, vol. 41, pp. 207–224, Jan. 2009.
[23] F. Zwicky, “On the Masses of Nebulae and of Clusters of Nebulae,” , vol. 86, p. 217, Oct. 1937.
[24] P. Kosso, Dark Matter, p. 187–198. Cambridge University Press, 2017.
[25] E. Corbelli and P. Salucci, “The extended rotation curve and the dark matter halo of m33,” Monthly Notices of the Royal Astronomical Society, vol. 311, p. 441–447, Jan 2000.
[26] M. Bartelmann, “Gravitational lensing,” Classical and Quantum Gravity, vol. 27, p. 233001, Nov 2010.
[27] R. M. Wald, General Relativity. Chicago, USA: Chicago Univ. Pr., 1984.
[28] F. W. Dyson, A. S. Eddington, and C. Davidson, “A Determination of the Deflection of Light by the Sun’s Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919,” Phil. Trans. Roy. Soc. Lond. A, vol. 220, pp. 291–333, 1920.
[29] R. Narayan and M. Bartelmann, “Lectures on gravitational lensing,” in 13th Jerusalem Winter School in Theoretical Physics: Formation of Structure in the Universe, 6 1996.
[30] M. J. Jee, “Tracing the peculiar dark matter structure in the galaxy cluster cl 0024+17 with intracluster stars and gas,” The Astrophysical Journal, vol. 717, p. 420–434, Jun 2010.
[31] P. Katgert, A. Biviano, and A. Mazure, “The ESO nearby abell cluster survey. XII. the mass and mass-to-light ratio profiles of rich clusters,” The Astrophysical Journal, vol. 600, pp. 657–669, jan 2004.
[32] Y. Sofue and V. Rubin, “Rotation curves of spiral galaxies,” Annual Review of Astronomy and Astrophysics, vol. 39, p. 137–174, Sep 2001. 97
[33] E. W. Kolb and M. S. Turner, The Early Universe, vol. 69. 1990.
[34] P. J. E. Peebles, Principles of Physical Cosmology. 1993.
[35] D. Baumann, “Tasi lectures on inflation,” 2012.
[36] H. Baer, K.-Y. Choi, J. E. Kim, and L. Roszkowski, “Dark matter production in the early universe: Beyond the thermal wimp paradigm,” Physics Reports, vol. 555, p. 1–60, Feb 2015.
[37] S. Dodelson, E. I. Gates, and M. S. Turner, “Cold dark matter,” Science, vol. 274, p. 69–75, Oct 1996.
[38] L. Roszkowski, E. M. Sessolo, and S. Trojanowski, “WIMP dark matter candidates and searches—current status and future prospects,” Reports on Progress in Physics, vol. 81, p. 066201, may 2018.
[39] H. T.-K. Wong, “Taiwan experiment on neutrino –history, status and prospects,” 2016.
[40] V. Singh and H. T. Wong, “Nuclear reactor operation monitoring and dark matter searches,” Procs. Peaceful Uses of Atomic Energy, vol. II, p. 406, 04 2009.
[41] F. Iachello, “Open problems in neutrino physics,” Journal of Physics: Conference Series, vol. 1056, p. 012027, jul 2018.
[42] P. S. Wesson, “Fundamental unsolved problems in astrophysics.”
[43] S.-T. Lin and H. T. Wong, “Dark matter search with germanium detector at O(100eV) threshold,” in 5th Patras Workshop on Axions, WIMPs and WISPs, 6 2010.
[44] H. T. Wong, H. B. Li, S. T. Lin, F. S. Lee, V. Singh, S. C. Wu, C. Y. Chang, H. M. Chang, C. P. Chen, M. H. Chou, and et al., “Search of neutrino magnetic moments with a high-purity germanium detector at the kuo-sheng nuclear power station,” Physical Review D, vol. 75, Jan 2007.
[45] T. Kosmas, O. Miranda, D. Papoulias, M. Tórtola, and J. Valle, “Sensitivities to neutrino electromagnetic properties at the texono experiment,” Physics Letters B, vol. 750, p. 459–465, Nov 2015. 98
[46] H. B. Li et al., “Limits on spin-independent couplings of wimp dark matter with a p-type point-contact germanium detector,” Phys. Rev. Lett., vol. 110, p. 261301, Jun 2013.
[47] M. K. Singh, L. Singh, M. Agartioglu, V. Sharma, V. Singh, and H. T.-k. Wong, “Constraints on bosonic dark matter with low threshold germanium detector at kuosheng reactor neutrino laboratory,” Chinese Journal of Physics, vol. 58, p. 63–74, Apr 2019. [48] M. Deniz et al., “Measurement of Nu(e)-bar -Electron Scattering Cross-Section with a CsI(Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor,” Phys. Rev. D, vol. 81, p. 072001, 2010.
[49] M. Tanabashi et al., “Review of particle physics,” Phys. Rev. D, vol. 98, p. 030001, Aug 2018.
[50] Y. F. Zhu et al., “Measurement of the intrinsic radiopurity of Cs-137 / U-235 / U-238 / Th-232 in CsI(Tl) crystal scintillators,” Nucl. Instrum. Meth. A, vol. 557, pp. 490–500, 2006.
[51] E. M. Pell, “Ion drift in an n-p junction,” Journal of Applied Physics, vol. 31, no. 2, pp. 291–302, 1960.
[52] R. N. Hall and T. J. Soltys, “High purity germanium for detector fabrication,” IEEE Transactions on Nuclear Science, vol. 18, no. 1, pp. 160–165, 1971.
[53] G. Morgan, G. Owen, and Y. Lee, “Fabrication of large planar ge(li) detectors,” Nuclear Instruments and Methods, vol. 76, no. 1, pp. 169–170, 1969.
[54] J. M. Marler and P. V. Hewka, “Coaxial detectors from high purity germanium,” IEEE Transactions on Nuclear Science, vol. 21, no. 1, pp. 287–295, 1974.
[55] S. Mertens, A. Hegai, D. Radford, N. Abgrall, Y.-D. Chan, R. Martin, A. Poon, and C. Schmitt, “Characterization of high purity germanium point contact detectors with low net impurity concentration,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 921, p. 81–88, Mar 2019. 99
[56] P. Barton, M. Amman, R. Martin, and K. Vetter, “Ultra-low noise mechanically cooled germanium detector,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 812, p. 17–23, Mar 2016.
[57] J. Mayer, “Ion implantation in semiconductors,” in 1973 International Electron Devices Meeting, pp. 3–5, 1973.
[58] D.-M. Mei, Z.-B. Yin, and S. Elliott, “Cosmogenic production as a background in searching for rare physics processes,” Astroparticle Physics, vol. 31, p. 417–420, Jul 2009.
[59] S. Cebrian, H. Gomez, G. Luzon, J. Morales, A. Tomas, and J. A. Villar, “Cosmogenic activation in germanium and copper for rare event searches,” Astropart. Phys., vol. 33, pp. 316–329, 2010.
[60] H. Li, L. Singh, M. Singh, A. Soma, C. Tseng, S. Yang, M. Agartioglu, G. Asryan, Y. Chuang, M. Deniz, and et al., “Differentiation of bulk and surface events in p-type point-contact germanium detectors for light wimp searches,” Astroparticle Physics, vol. 56, p. 1–8, Apr 2014.
[61] R. Agnese, T. Aralis, T. Aramaki, I. Arnquist, E. Azadbakht, W. Baker, S. Banik, D. Barker, D. Bauer, T. Binder, and et al., “Production rate measurement of tritium and other cosmogenic isotopes in germanium with cdmslite,” Astroparticle Physics, vol. 104, p. 1–12, Jan 2019.
[62] L.-T. Yang, H.-B. Li, Q. Yue, K.-J. Kang, J.-P. Cheng, Y.-J. Li, H. T.-K. Wong, M. Aˇgartioˇglu, H.-P. An, J.-P. Chang, J.-H. Chen, Y.-H. Chen, Z. Deng, Q. Du, H. Gong, L. He, J.-W. Hu, Q.-D. Hu, H.-X. Huang, L.-P. Jia, H. Jiang, H. Li, J.-M. Li, J. Li, X. Li, X.-Q. Li, Y.-L. Li, F.-K. Lin, S.-T. Lin, S.-K. Liu, Z.-Z. Liu, H. Ma, J.-L. Ma, H. Pan, J. Ren, X.-C. Ruan, B. Sevda, V. Sharma, M.-B. Shen, L. Singh, M. K. Singh, C.-J. Tang, W.-Y. Tang, Y. Tian, J.-M. Wang, L. Wang, Q. Wang, Y. Wang, S.-Y. Wu, Y.-C. Wu, H.-Y. Xing, Y. Xu, T. Xue, S.-W. Yang, N. Yi, C.-X. Yu, H.-J. Yu, J.-F. Yue, X.-H. Zeng, M. Zeng, Z. Zeng, Y.-H. Zhang, M.-G. Zhao, W. Zhao, J.-F. Zhou, Z.-Y. Zhou, J.-J. Zhu, and Z.-H. Z. and, “Limits on light WIMPs with a 1 kg-scale germanium detector at 160 eVee physics threshold at the 100china jinping underground laboratory,” Chinese Physics C, vol. 42, p. 023002, jan 2018.
[63] K.-J. Kang et al., “Introduction to the CDEX experiment,” Front. Phys. (Beijing), vol. 8, pp. 412–437, 2013.
[64] H.-B. Li, “Status and prospects of CDEX: the China Dark Matter Experiment,” PoS, vol. ICHEP2018, p. 648, 2019.
[65] H. Ma et al., “CDEX Dark Matter Experiment: Status and Prospects,” J. Phys. Conf. Ser., vol. 1342, no. 1, p. 012067, 2020. [66] R. W. SCHNEE, “Introduction to dark matter experiments,” Physics of the Large and the Small, Mar 2011.
[67] A. M. Dziewonski and D. L. Anderson, “Preliminary reference earth model,” Physics of the Earth and Planetary Interiors, vol. 25, no. 4, pp. 297–356, 1981.
[68] R. A. Minzner, “The 1976 standard atmosphere and its relationship to earlier standards,” Jun 2010.
[69] T. Emken and C. Kouvaris, “How blind are underground and surface detectors to strongly interacting dark matter?,” Physical Review D, vol. 97, Jun 2018.
[70] G. Angloher, P. Bauer, A. Bento, C. Bucci, L. Canonica, X. Defay, A. Erb, F. v. Feilitzsch, N. F. Iachellini, P. Gorla, and et al., “Results on mev-scale dark matter from a gram-scale cryogenic calorimeter operated above ground,” The European Physical Journal C, vol. 77, Sep 2017.
[71] J. Barreto, H. Cease, H. Diehl, J. Estrada, B. Flaugher, N. Harrison, J. Jones, B. Kilminster, J. Molina, J. Smith, and et al., “Direct search for low mass dark matter particles with ccds,” Physics Letters B, vol. 711, p. 264–269, May 2012.
[72] C. collaboration, F. Petricca, G. Angloher, P. Bauer, A. Bento, C. Bucci, L. Canonica, X. Defay, A. Erb, F. v. Feilitzsch, N. F. Iachellini, P. Gorla, A. Gütlein, D. Hauff, J. Jochum, M. Kiefer, H. Kluck, H. Kraus, J. C. Lanfranchi, A. Lagenkämper, J. Loebell, M. Mancuso, E. Mondragon, A. Münster, C. Pagliarone, W. Potzel, F. Pröbst, R. Puig, F. Reindl, J. Rothe, K. Schäffner, J. Schieck, S. Schönert, W. Seidel, 101M. Stahlberg, L. Stodolsky, C. Strandhagen, R. Strauss, A. Tanzke, H. H. T. Thi, C. Türkoğlu, A. Ulrich, I. Usherov, S. Wawoczny, M. Willers, and M. Wüstrich, “First results on low-mass dark matter from the cresst-iii experiment,” 2017. [73] E. Aprile, J. Aalbers, F. Agostini, M. Alfonsi, F. Amaro, M. Anthony, F. Arneodo, P. Barrow, L. Baudis, B. Bauermeister, and et al., “First dark matter search results from the xenon1t experiment,” Physical Review Letters, vol. 119, Oct 2017.
[74] A. L. Erickcek, P. J. Steinhardt, D. McCammon, and P. C. McGuire, “Constraints on the interactions between dark matter and baryons from the x-ray quantum calorimetry experiment,” Physical Review D, vol. 76, Aug 2007.
[75] V. Gluscevic and K. K. Boddy, “Constraints on scattering of kev–tev dark matter with protons in the early universe,” Physical Review Letters, vol. 121, Aug 2018.
[76] C. A. O’Hare, “Dark matter astrophysical uncertainties and the neutrino floor,” Physical Review D, vol. 94, Sep 2016.
[77] C. Savage, G. Gelmini, P. Gondolo, and K. Freese, “Compatibility of DAMA/LIBRA dark matter detection with other searches,” Journal of Cosmology and Astroparticle Physics, vol. 2009, pp. 010–010, apr 2009.
[78] C. E. Aalseth, P. S. Barbeau, J. Colaresi, J. I. Collar, J. Diaz Leon, J. E. Fast, N. E. Fields, T. W. Hossbach, A. Knecht, M. S. Kos, and et al., “Cogent: A search for low-mass dark matter usingp-type point contact germanium detectors,” Physical Review D, vol. 88, Jul 2013.
[79] D. Neamen, Semiconductor Physics And Devices. USA: McGraw-Hill, Inc., 3 ed., 2002.
[80] C. Jacoboni, F. Nava, C. Canali, and G. Ottaviani, “Electron drift velocity and diffusivity in germanium,” Phys. Rev. B, vol. 24, pp. 1014–1026, Jul 1981.
[81] D. M. Riffe, “Temperature dependence of silicon carrier effective masses with application to femtosecond reflectivity measurements,” J. Opt. Soc. Am. B, vol. 19, pp. 1092–1100, May 2002. 102
[82] T. Lackner, “Avalanche multiplication in semiconductors: A modification of chynoweth’s law,” Solid-State Electronics, vol. 34, no. 1, pp. 33 –42, 1991.
[83] W. Z. Wei, L. Wang, and D. M. Mei, “Average energy expended per e-h pair for germanium-based dark matter experiments,” JINST, vol. 12, no. 04, p. P04022, 2017.
[84] A. S. Starostin and A. G. Beda, “Germanium detector with an internal amplification for investigating rare processes,” Physics of Atomic Nuclei, vol. 63, no. 7, pp. 12971300, 2000.
[85] H. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, G. Roelkens, and J. Van Campenhout, “Dark current analysis in high-speed germanium p-i-n waveguide photodetectors,” Journal of Applied Physics, vol. 119, no. 21, p. 213105, 2016.
[86] W.-Z. Wei, X.-H. Meng, Y.-Y. Li, J. Liu, G.-J. Wang, H. Mei, G. Yang, D.-M. Mei, and C. Zhang, “Investigation of amorphous germanium contact properties with planar detectors made from USD-grown germanium crystals,” Journal of Instrumentation, vol. 13, pp. P12026–P12026, dec 2018.
[87] Q. Looker, M. Amman, and K. Vetter, “Leakage current in high-purity germanium detectors with amorphous semiconductor contacts,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 777, pp. 138 –147, 2015.
[88] S. Li, Semiconductor Physical Electronics. Berlin, Heidelberg: Springer-Verlag, 2006.
[89] A. Milnes and D. Feucht, “Chapter 7 -metal–semiconductor junction behavior,” in Heterojunctions and Metal Semiconductor Junctions (A. Milnes and D. Feucht, eds.), pp. 171 –200, Academic Press, 1972.
[90] P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in inas avalanche photodiodes,” IEEE Journal of Quantum Electronics, vol. 47, no. 8, pp. 1123–1128, 2011.
[91] S. Bhattarai, R. Panth, W. Z. Wei, H. Mei, D. M. Mei, M. S. Raut, P. Acharya, and G. J. Wang, “Investigation of the electrical conduction mechanisms in P-type 103amorphous germanium electrical contacts for germanium detectors in searching for rare-event physics,” Eur. Phys. J. C, vol. 80, no. 10, p. 950, 2020.
[92] C. D. Bulucea and D. C. Prisecaru, “The calculation of the avalanche multiplication factor in silicon p—n junctions taking into account the carrier generation (thermal or optical) in the space-charge region,” IEEE Transactions on Electron Devices, vol. 20, no. 8, pp. 692–701, 1973.
[93] S. L. Miller, “Avalanche breakdown in germanium,” Phys. Rev., vol. 99, pp. 12341241, Aug 1955.
[94] P. Spirito, “Avalanche multiplication factors in ge and si abrupt junctions,” IEEE Transactions on Electron Devices, vol. 21, no. 3, pp. 226–231, 1974.
[95] L. Zhao, “A formula to calculate solid dielectric breakdown strength based on a model of electron impact ionization and multiplication,” AIP Advances, vol. 10, p. 025003, Feb. 2020.
[96] D. M. Mei et al., “Impact of Charge Trapping on the Energy Resolution of Ge Detectors for Rare-Event Physics Searches,” J. Phys. G, vol. 47, no. 10, p. 105106, 2020.
指導教授 余欣珊 王子敬(Shin-Shan Yu Tsz-King Wong) 審核日期 2021-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明