博碩士論文 108222019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.128.198.21
姓名 蔡承恩(Tsai, Cheng-En)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Force between Contacting PDMS Surfaces upon Steady Sliding: Speed Dependence and Fluctuations)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在先前的實驗中,我們發現PDMS(聚二甲基矽氧烷)的顆粒流會因為剪切速度變化而呈現三種不同狀態[Phys. Rev. Lett. 126,128001 (2021)]。我們認為這個與速度相關的相變化,其原因可能來自於PDMS表面摩擦力的速度相關性。為了驗證這個解釋,我們設計了兩種實驗去量測PDMS表面滑動時的應力。第一類實驗為控制兩PDMS顆粒滑動軌跡與速度,使其接觸並測量其中一個顆粒的正向與切向應力。第二類實驗使用兩PDMS長棒狀表面,垂直交叉擺放並相互摩擦,測量其中一個表面的正向與切向應力。此兩種實驗皆在特定濃度的甘油水溶液中進行。我們改變滑動速度進行多次測量,以探討PDMS滑動時應力與速度的關係。我們發現,在這兩種實驗中,PDMS表面的切向應力都與滑動速度相關,呈現Stribeck曲線關係。在其中一段速度區間中,平均的切向應力隨著滑動速度增快而變小,且會伴隨者Stick-slip(滯著滑動)現象發生。另外我們觀察到,對同一個樣本而言,隨著累積摩擦距離的增加,發生Stick-slip現象的最低速度,有不斷變小的趨勢。這暗示著PDMS表面性質會隨著實驗發生變化,換言之,Stick-slip現象有可能成為表面些微變化的指標。我們希望這篇論文能夠對於軟表面的摩擦學,提供新的線索。
摘要(英) We perform experiments that simultaneously resolve the tangential and normal components of the force between fluid-immersed PDMS (polydimethylsiloxane) surfaces, as they compress and slide against each other at controlled speeds and relative positions. Two combinations of surface geometries are utilized for these experiments: the passing of two spheres (SP), and the steady sliding between two elongated samples that are arranged orthogonally with a fixed depth of overlap (FD). We use glycerol-water mixture at different concentrations as the interstitial fluid, with the sliding speeds varied over four decades. In both SP and FD experiments, the time-averaged values of tangential force share similar speed dependence that is consistent to the well-known Stribeck curve in tribology. However, the normal force reflects a Hertzian scaling and appears insensitive to the sliding speed. In addition, our experiments time-resolve the fluctuations of tangential force which reveal stick-slip patterns, in order to probe the possible mechanisms behind the reduction of "friction" from its plateau value as the system enters the mixed lubrication regime in past literatures. We also find that the onset of stick-slip patterns can serve as a sensitive indicator for a small change on the contacting surfaces. These experiments reveal clues for understanding the fluid-structure interaction that leads to the velocity weakening of friction between fluid-immersed elastic surfaces, and complete our model for interpreting the solid-fluid transition in a granular shear flow [Phys. Rev. Lett. 126,128001 (2021)] that shows stick-slip behaviors.
關鍵字(中) ★ 滯著滑動
★ 聚二甲基矽氧烷
★ 摩擦學
關鍵字(英) ★ PDMS
★ Stick-Slip
★ Tribology
論文目次 中文摘要.............................................II
Abstract............................................III
致謝.................................................IV
List of Figures .....................................VI
Chapter 1. Introduction .............................1
Chapter 2. Experimental Setup........................3
Chapter 3. Results ..................................6
3.1 Experiments on sphere passing (SP).............6
3.2 Experiments on fixed-depth (FD) slidin.........8
3.3 Effect of fluid viscosity .....................9
3.4 Fluctuations --- observations on
stick-slip patterns............................... 10
Chapter 4. discusion................................13
4.1 Possible origin of the
stick-slip instability ............................13
4.2 Onset of stick slips...........................15
4.3 Signs of change on sample surfaces ............16
Chapter 5. Conclusion ...............................18
Appendix.............................................20
Sample preparation.................................20
References ..........................................22
參考文獻 (1) Persson, B. N. J. Sliding Friction: Physical Principles and Applications; Springer: Berlin; London, 2011.
(2) Stachowiak, G. W.; Batchelor, A. W. Engineering Tribology, Fourth edition.; Elsevier/Butterworth-Heinemann: Oxford, 2014.
(3) Bayer, R. G. Mechanical Wear Fundamentals and Testing, 2nd ed., rev.expanded.; Mechanical engineering; M. Dekker: New York, 2004.
(4) Scholz, C. H. Earthquakes and Friction Laws. Nature 1998, 391 (6662), 37–42. https://doi.org/10.1038/34097.
(5) Jagla, E. A.; Landes, F. P.; Rosso, A. Viscoelastic Effects in Avalanche Dynamics: A Key to Earthquake Statistics. Phys. Rev. Lett. 2014, 112 (17), 174301. https://doi.org/10.1103/PhysRevLett.112.174301.
(6) Ide, S.; Beroza, G. C.; Shelly, D. R.; Uchide, T. A Scaling Law for Slow Earthquakes. Nature 2007, 447 (7140), 76–79. https://doi.org/10.1038/nature05780.
(7) Tsai, J.-C. (JC); Huang, G.-H.; Tsai, C.-E. Signature of Transition between Granular Solid and Fluid: Rate-Dependent Stick Slips in Steady Shearing. Phys. Rev. Lett. 2021, 126 (12), 128001. https://doi.org/10.1103/PhysRevLett.126.128001.
(8) Bongaerts, J. H. H.; Fourtouni, K.; Stokes, J. R. Soft-Tribology: Lubrication in a Compliant PDMS–PDMS Contact. Tribology International 2007, 40 (10–12), 1531–1542. https://doi.org/10.1016/j.triboint.2007.01.007.
(9) Le Rouzic, J.; Le Bot, A.; Perret-Liaudet, J.; Guibert, M.; Rusanov, A.; Douminge, L.; Bretagnol, F.; Mazuyer, D. Friction-Induced Vibration by Stribeck’s Law: Application to Wiper Blade Squeal Noise. Tribol Lett 2013, 49 (3), 563–572. https://doi.org/10.1007/s11249-012-0100-z.
(10) Kim, J. M.; Wolf, F.; Baier, S. K. Effect of Varying Mixing Ratio of PDMS on the Consistency of the Soft-Contact Stribeck Curve for Glycerol Solutions. Tribology International 2015, 89, 46–53. https://doi.org/10.1016/j.triboint.2014.12.010.
(11) Selway, N.; Chan, V.; Stokes, J. R. Influence of Fluid Viscosity and Wetting on Multiscale Viscoelastic Lubrication in Soft Tribological Contacts. Soft Matter 2017, 13 (8), 1702–1715. https://doi.org/10.1039/C6SM02417C.
(12) Drummond, C.; Israelachvili, J. Dynamic Phase Transitions in Confined Lubricant Fluids under Shear. Phys. Rev. E 2001, 63 (4), 041506. https://doi.org/10.1103/PhysRevE.63.041506.
(13) Gourdon, D.; Israelachvili, J. N. Transitions between Smooth and Complex Stick-Slip Sliding of Surfaces. Phys. Rev. E 2003, 68 (2), 021602. https://doi.org/10.1103/PhysRevE.68.021602.
(14) Maru, M. M.; Tanaka, D. K. Consideration of Stribeck Diagram Parameters in the Investigation on Wear and Friction Behavior in Lubricated Sliding. J. Braz. Soc. Mech. Sci. & Eng. 2007, 29 (1). https://doi.org/10.1590/S1678-58782007000100009.
(15) El-Tayeb, N. S. M.; Nasir, R. Md. Effect of Soft Carbon Black on Tribology of Deproteinised and Polyisoprene Rubbers. Wear 2007, 262 (3), 350–361. https://doi.org/10.1016/j.wear.2006.05.021.
(16) Landau, L. D.; Lifshit︠s︡, E. M.; Kosevich, A. M.; Pitaevskiĭ, L. P.; Landau, L. D. Theory of Elasticity, 3rd English ed., revised and enlarged by E.M. Lifshitz, A.M. Kosevich, and L.P. Pitaevskii.; Course of theoretical physics; Pergamon Press: Oxford [Oxfordshire] ; New York, 1986.
(17) Lim, M. Y.; Stokes, J. R. Lubrication of Non-Ionic Surfactant Stabilised Emulsions in Soft Contacts. Biotribology 2021, 28, 100199. https://doi.org/10.1016/j.biotri.2021.100199.
(18) Rudge, R. E. D.; Scholten, E.; Dijksman, J. A. Natural and Induced Surface Roughness Determine Frictional Regimes in Hydrogel Pairs. Tribology International 2020, 141, 105903. https://doi.org/10.1016/j.triboint.2019.105903.
(19) Buldum, A.; Ciraci, S. Interplay between Stick-Slip Motion and Structural Phase Transitions in Dry Sliding Friction. Phys. Rev. B 1997, 55 (19), 12892–12895. https://doi.org/10.1103/PhysRevB.55.12892.
(20) Pitenis, A. A.; Urueña, J. M.; Schulze, K. D.; Nixon, R. M.; Dunn, A. C.; Krick, B. A.; Sawyer, W. G.; Angelini, T. E. Polymer Fluctuation Lubrication in Hydrogel Gemini Interfaces. Soft Matter 2014, 10 (44), 8955–8962. https://doi.org/10.1039/C4SM01728E.
(21) Bonaventure, J.; Cayer-Barrioz, J.; Mazuyer, D. Surface Effects on Boundary Friction with Additive-Free Lubricating Films: Coupled Influence of Roughness and Material Properties. Tribol Lett 2018, 66 (3), 84. https://doi.org/10.1007/s11249-018-1030-1.
(22) Drummond, C.; Israelachvili, J.; Richetti, P. Friction between Two Weakly Adhering Boundary Lubricated Surfaces in Water. Phys. Rev. E 2003, 67 (6), 066110. https://doi.org/10.1103/PhysRevE.67.066110.
(23) Urbakh, M.; Klafter, J.; Gourdon, D.; Israelachvili, J. The Nonlinear Nature of Friction. Nature 2004, 430 (6999), 525–528. https://doi.org/10.1038/nature02750.
(24) Astakhov, V. P. Surface Integrity – Definition and Importance in Functional Performance. In Surface Integrity in Machining; Davim, J. P., Ed.; Springer London: London, 2010; pp 1–35. https://doi.org/10.1007/978-1-84882-874-2_1.
(25) The Dow Chemical, Sylgard-184.
(26) Raheem, Z. Polymer Data Handbook; 2019.
(27) H. Pritchard, R.; Lava, P.; Debruyne, D.; M. Terentjev, E. Precise Determination of the Poisson Ratio in Soft Materials with 2D Digital Image Correlation. Soft Matter 2013, 9 (26), 6037–6045. https://doi.org/10.1039/C3SM50901J.
(28) Johnston, I. D.; McCluskey, D. K.; Tan, C. K. L.; Tracey, M. C. Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering. J. Micromech. Microeng. 2014, 24 (3), 035017. https://doi.org/10.1088/0960-1317/24/3/035017.
(29) Khanafer, K.; Duprey, A.; Schlicht, M.; Berguer, R. Effects of Strain Rate, Mixing Ratio, and Stress–Strain Definition on the Mechanical Behavior of the Polydimethylsiloxane (PDMS) Material as Related to Its Biological Applications. Biomedical microdevices 2009. https://doi.org/10.1007/s10544-008-9256-6.
指導教授 陳俞融 蔡日強 審核日期 2022-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明