博碩士論文 108222035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.220.66.151
姓名 陳諾(No Chen)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Deformation Dynamics of Active 2D Tetragonal Pseudo-Crystal)
相關論文
★ 多細菌鞭毛馬達的同步轉動量測★ Investigating Stators Assembly of Flagellar Motors in Escherichia Coli by PALM
★ 被動粒子在不同的流體型態★ Lab on the Agar Plates
★ Probing the Physical Environments of Bacterial Swarm Colony★ Spiral-coil Formation in Semi-flexible Self-propelled Chain System
★ Real-Time Measurement of Vibrio alginolyticus Polar Flagellar Growth★ Foraging behavior of Caenorhabditis elegans
★ Jamming State of Active Nematics★ Probing Escherichia coli Energetics under Starvation by Single-Cell Measurements
★ Probing Cell Wall Synthetic Dynamics by Bacterial Flagellar Motor in Escherichia coli★ Dynamics of sodium-driven stator units in bacterial flagellar motors
★ 高密度二維群游細菌系統之動力學★ Probing Ion-Flux of Bacterial Flagellar Motors by Correlative Microscopy
★ Aliivibrio fischeri in Motion★ 主動粒子的擴張行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 主動推進粒子表現出各種非平衡湧現行為。主動推進粒子的形狀對於決定 全局湧現行為至關重要。與球形粒子不同,棒狀粒子通過簡單的體積排斥力和 局部交互作用湧現出有序地排列。因此,透過模擬主動布朗桿狀粒子(ABR)可 以形成仿生的紊流、群游和阻塞狀態。目前二維 ABR 的研究主要集中在集體運 動上,對動力學知之甚少。通過對細菌群落動力學的實驗觀察,我們發現局部 的動力平衡對阻塞狀態至關重要。受這一發現的啟發,我們設計了一種四方假 晶 (TPC),該晶格具有三個垂直交叉的活性棒。然後我們使用 LAMMPS 進行布 朗動力學模擬來研究活性偽晶格的動力學。
我們發現四元有序和晶體穩定性對密度和主動推進力敏感。在較低的系統 密度或更大的主動推進力下,TPC 會熔化成紊流狀態。另一方面,即使在高活 動力下,TPC 也可以在高密度下保持有序的晶格狀態。有趣的是,系統中存在 介於(紊流)無序狀態和(阻塞)有序狀態的中間態。通過研究此一少缺陷的長壽 命 TPC 中間態的位錯,我們揭示了 ABR 之間的剪應力誘導了熔化過程。此 外,我們發現 ABR 的密度和主動推進力的作用對我們的二維 ABR 系統中的變 形和熔化動力學有不同的影響。我們的研究為主動推進物質的研究提供了新的 方向。
摘要(英) Active matter exhibits various non-equilibrium emergence behaviors. The shape of active matter individual particles is critical for the local interaction that determines the global emergence behaviors. Unlike spherical particles, rod- shaped particles show strong particle-particle alignment by simple volume exclu- sion. Therefore, active Brownian rods (ABR) can form biomimetic, turbulence, swarming, and jamming states. The current research of two-dimensional ABR focus on collective motion, and little is known about the dynamics. From the experimental observation of jamming dynamics in bacterial swarming, we found that the active force balance is critical for jamming. Inspired by this finding, we designed a tetragonal pseudo-crystal (TPC) that unit cells with three active rods crisscrossed orthogonally. We then used LAMMPS to perform Brownian dynamic simulation to study the dynamics of the active pseudo-crystal.
We found that the tetratic order and crystal stability are sensitive to the packing ratio and the active force. At a lower packing ratio or more vital active force, the TPC can melt into a turbulence state. On the other hand, the TPC can maintain the tetratic order at a high packing ratio even at a highly active force. Interestingly, there are long-living ordered intermediate states that the system contains few defects. By studying the dislocations of intermediate states of TPC, we reveal that the shear slipping events between ABR induce the melting process. Also, we found that the role of packing ratio and active force of ABR have different effects on deformation and melting dynamics in our two-dimensional ABR system. This work provides a new direction of active matter research on the Pseudo-crystal.
關鍵字(中) ★ 主動物質
★ 桿狀粒子
★ 四方結構
★ 形變
★ 偽晶格
★ 非平衡
★ 融化
★ 相變
★ 錯位
關鍵字(英) ★ Active Matter
★ Rod-like Particle
★ Tetratic Order
★ Deformation
★ Pseudo-Crystal
★ Non-equilibrium
★ Melting
★ Phase Transition
★ Dislocation
論文目次 Abstract i
Acknowledgements iii
List of Figures vii
List of Tables xi
Listings xiii
1 Introduction 1
1.1 The Big Picture of Active Matter Systems . . . . . . . . . . . . . 1
1.2 Phases of Active Matter Systems .................. 2
1.2.1 Jamming in the bacterial swarming. . . . . . . . . . . . . 2
1.2.2 Phase diagram of passive spherical particles . . . . . . . . 3
1.2.3 Phase diagram of passive rod-like particle . . . . . . . . . 3
1.2.4 Phase diagram of active particles . . . . . . . . . . . . . . 4
1.3 Solid-Liquid Transition of Spherical System . . . . . . . . . . . . 6
1.4 Motivation .............................. 6
2 Methods 9
2.1 Active Brownian Rod Model..................... 9
2.1.1 Rod-likeparticles....................... 9
2.1.2 Volume exclusion and bending elasticity . . . . . . . . . . 10
2.1.3 Self-propulsionforce ..................... 12
2.1.4 Initial conditions and tetragonal pseudo-crystal . . . . . . 13
2.2 Computational Method ....................... 13
2.2.1 Brownian dynamics-LAMMPS .............. 14
2.2.2 LAMMPS-script ...................... 14
2.3 Analysis Methods........................... 16
2.3.1 Tetratic order......................... 16
2.3.2 TPC algorithm........................ 16
2.3.3 Finite strain approximate .................. 17
3 Results 19
3.1 Phase diagram ............................ 19
3.2 Structures............................... 21
3.3 Dynamics and evolution of the system ............... 22
3.4 Dislocation and Translational movement of TPC . . . . . . . . . 25
3.5 Deformation and Orientational movement of TPC. . . . . . . . 27
4 Conclusions 31
A Simulation Parameters 33
A.1 Parameters .............................. 33
參考文獻 [1] Tamas Vicsek, Andras Czirok, Eshel Ben-Jacob, Inon Cohen, and Ofer Shoche. Novel Type of Phase Transition in a System of Self-Driven Parti- cles. Physical Review Letters, 75(6):1226–1229, 1995.
[2] Thomas Mu ̈ller, Daniel De Las Heras, Ingo Rehberg, and Kai Huang. Or- dering in granular-rod monolayers driven far from thermodynamic equilib- rium. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 91(6):1–7, 2015.
[3] H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E. Goldstein, H. Lowen, and J. M. Yeomans. Meso-scale turbulence in living fluids. Pro- ceedings of the National Academy of Sciences, 109(36):14308–14313, 2012.
[4] Gabriel S. Redner, Michael F. Hagan, and Aparna Baskaran. Structure and dynamics of a phase-separating active colloidal fluid. Physical Review Letters, 110(5):1–5, 2013.
[5] Benjamin Loewe, Michael Chiang, Davide Marenduzzo, and M Cristina Marchetti. Solid-Liquid Transition of Deformable and Overlapping Active Particles. Physical Review Letters, 125(3):38003, 2020.
[6] C. A. Weber, T Hanke, J Deseigne, S L ́eonard, O Dauchot, E Frey, and H Chate. Long-Range Ordering of Vibrated Polar Disks. Physical Review Letters, 110:1–5, 2013.
[7] Hui Shun Kuan, Robert Blackwell, Loren E. Hough, Matthew A. Glaser, and M. D. Betterton. Hysteresis, reentrance, and glassy dynamics in sys- tems of self-propelled rods. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 92(6):1–6, 2015.
[8] Francesco Ginelli, Fernando Peruani, Markus B ̈ar, and Hugues Chat ́e. Large-scale collective properties of self-propelled rods. Physical Review Letters, 104(18):1–4, 2010.
[9] Simon Garcia, Edouard Hannezo, Jens Elgeti, Jean-Franc ̧ois Joanny, Pascal Silberzan, and Nir S. Gov. Physics of active jamming during collective cellular motion in a monolayer. Proceedings of the National Academy of Sciences, 112(50):15314–15319, 2015.
[10] Hugues Chat ́e, Francesco Ginelli, and Rau ́l Montagne. Simple model for active nematics: Quasi-long-range order and giant fluctuations. Physical Review Letters, 96(18):1–4, 2006.
[11] Samuel R. McCandlish, Aparna Baskaran, and Michael F. Hagan. Sponta- neous segregation of self-propelled particles with different motilities. Soft Matter, 8(8):2527–2534, 2012.
[12] Yingzi Yang, Vincent Marceau, and Gerhard Gompper. Swarm behavior of self-propelled rods and swimming flagella. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 82(3):1–13, 2010.
[13] Silke Henkes, Yaouen Fily, and M. Cristina Marchetti. Active jamming: Self-propelled soft particles at high density. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 84(4):84–87, 2011.
[14] K. R. Prathyusha, Silke Henkes, and Rastko Sknepnek. Dynamically gen- erated patterns in dense suspensions of active filaments. Physical Review E, 97(2):1–9, 2018.
[15] Sebastian Weitz, Andreas Deutsch, and Fernando Peruani. Self-propelled rods exhibit a phase-separated state characterized by the presence of active stresses and the ejection of polar clusters. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 92(1):1–9, 2015.
[16] Yaouen Fily and M Cristina Marchetti. Athermal phase separation of self- propelled particles with no alignment. Physical Review Letters, 108(23):1–5, 2012.
[17] Fernando Peruani, Andreas Deutsch, and Markus B ̈ar. Nonequilibrium clustering of self-propelled rods. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 74(3):1–4, 2006.
[18] Robin Van Damme, Jeroen Rodenburg, Ren ́e Van Roij, and Marjolein Di- jkstra. Interparticle torques suppress motility-induced phase separation for rodlike particles. Journal of Chemical Physics, 150(16), 2019.
[19] Yao-kuan Wang, Chien-jung Lo, and Wei-chang Lo. Formation of spiral coils among self-propelled chains. Physical Review E, 98:1–10, 2018.
[20] Thomas B ̈ottcher, Hunter L. Elliott, and Jon Clardy. Dynamics of snake-like swarming behavior of vibrio alginolyticus. Biophysical Journal, 110(4):981–992, 2016.
[21] Bella Ilkanaiv, Daniel B. Kearns, Gil Ariel, and Avraham Beer. Effect of Cell Aspect Ratio on Swarming Bacteria. Physical Review Letters, 118(15):1–5, 2017.
[22] Andrea J. Liu and Sidney R. Nagel. The Jamming Transition and the Marginally Jammed Solid. Annual Review of Condensed Matter Physics, 1(1):347–369, 2010.
[23] Aleksandar Donev, Joshua Burton, Frank H. Stillinger, and Salvatore Torquato. Tetratic order in the phase behavior of a hard-rectangle system. Physical Review B - Condensed Matter and Materials Physics, 73(5):1–11, 2006.
[24] A Jaster. Computer simulations of the two-dimensional melting transition using hard disks. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 59(3):2594–2602, 1999.
[25] Kun Chen. Melting in Two-Dimensional Lennard-Jones Systems: Obser- vation ofa Metastable Hexatic Phase. Physical Review Letters, 74(20):4, 1995.
[26] Sebastian C. Kapfer and Werner Krauth. Two-dimensional melting: From liquid-hexatic coexistence to continuous transitions. Physical Review Let- ters, 114(3):1–5, 2015.
[27] Christoph A Weber, Christopher Bock, and Erwin Frey. Defect-Mediated Phase Transitions in Active Soft Matter. Physical Review Letters, 112:1–5, 2014.
[28] Siddharth Paliwal and Marjolein Dijkstra. The role of topological defects in the two-stage melting and elastic behavior of active Brownian particles. arXiv, 2(1):12013, 2019.
[29] C Durniak and D Samsonov. Plastic Deformations in Complex Plasmas. Physical Review Letters, 106:1–5, 2011.
[30] Dapeng Bi, Xingbo Yang, M. Cristina Marchetti, and M. Lisa Manning. Motility-driven glass and jamming transitions in biological tissues. Physical Review X, 6(2):1–13, 2016.
[31] Marc Durand and Julien Heu. Thermally Driven Order-Disorder Transi- tion in Two-Dimensional Soft Cellular Systems. Physical Review Letters, 123(18):188001, 2019.
[32] Xia Qing Shi and Yu Qiang Ma. Topological structure dynamics revealing collective evolution in active nematics. Nature Communications, 4:1–9, 2013.
[33] Nitin Kumar, Rui Zhang, Juan J. de Pablo, and Margaret L. Gardel. Tun- able structure and dynamics of active liquid crystals. Science Advances, 4(10):1–13, 2018.
[34] Masoud Abkenar, Kristian Marx, Thorsten Auth, and Gerhard Gomp- per. Collective behavior of penetrable self-propelled rods in two dimen- sions. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 88(6):1–11, 2013.
[35] Yen Shuo Su and Lin I. Cooling the two-dimensional short spherocylinder liquid to the tetratic phase: Heterogeneous dynamics with one-way cou- pling between rotational and translational hopping. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 92(1):1–6, 2015.
指導教授 羅健榮(Chien-Jung Lo) 審核日期 2021-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明