博碩士論文 108222602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.237.27.159
姓名 葛琴紗(Ckysa Glenn Velquesincky)  查詢紙本館藏   畢業系所 物理學系
論文名稱 使用熱處理生長單晶銅箔
(Growth of Single Crystalline Copper Foils by Heat Treatment)
相關論文
★ Exploration of new methods for growing Ag films on Au(111) studied by ARPES★ 二階段成長法成長銀薄膜在銅(111)面上利用光電子能譜研究
★ 利用角解析光電子能譜術研究銅薄膜在銀(111)基板上的成長★ 利用角解析光電子能譜術探測Ag/Au(111)系統中銀表面態受到光誘發的衰變情形
★ 利用角解析光電子能譜術探測Ag/Au(111)系統中銀表面態受到光誘發的衰變情形★ Sulfur adsorption on Au(100): XPS, LEED and STM study
★ Adsorption and desorption of atomic hydrogen on the surface of thin Ag films on Au(111) studied with ARPES and XPS★ Thin-film growth of Bi and S on Au(100) studied with LEED and XPS
★ Silicon adsorption on Ag(111): XPS and LEED study★ The growth of Bi on Ag(111) studied with STM, LEED and XPS
★ The investigation of highly ordered Ag films on mica with STM, LEED and XPS★ 原子級平整SrTiO3(100)表面製備過程中之表面重構、表面形貌以及表面元素組成之變化
★ 碲與銻在銀(111)/白雲母表面的成長
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 銅單晶因為其具有的表面特性而引起強烈的興趣與研究動機,它可用於一些材料的成長,如石墨烯及六方氮化硼。然而,製作銅單晶的過程通常很複雜且成本高昂。最近一些研究指出,透過熱處理的方式將多晶銅箔轉化為大面積的單晶銅箔是可行的。這個方式能夠簡化將多晶銅箔轉化為單晶銅箔的過程,並且降低成本。
在本研究中,透過在Ar/H2混和氣體中的熱處理,我們成功地將市面上購買的多晶銅箔轉化為單晶銅箔。我們實際測試了不同的實驗參數,其中包含銅箔的厚度(30 μm,50 μm及80 μm)、加熱時間以及加熱溫度。在生長條件優化之後,我們得到有著Cu(111)表面的單晶箔片。我們利用低能量電子繞射儀(LEED)、歐傑電子能譜術(AES)以及掃描穿隧顯微鏡(STM)來檢測這些箔片的表面結構。我們的結果顯示,單晶銅箔可作為表面研究中高度有序薄膜的基底,並且可以代替昂貴的銅單晶。
摘要(英) Single crystal copper has attracted great interests because of its valuable surface properties that can be used to grow some materials, such as graphene and hexagonal boron nitride. However, the methods for the fabricating copper single crystals are usually complex and costly. A few recent studies have demonstrated that it is feasible to transform thin polycrystalline copper foils into large-area single crystalline foils with heat treatment methods, offering a simple and less expensive way to obtain single crystals from polycrystalline copper foils.
In this study, we obtain single-crystalline copper foils from commercial polycrystalline copper foils by heat treatment under the mixture of gas Ar/H2. Different parameters of heat treatment are tested such as thickness of Cu foils (30 μm, 50 μm, and 80 μm), duration, and temperature. After the optimization of growth condition, Cu(111) single crystal is obtained. The surface structure is characterized by Low Energy Electron Diffraction (LEED), Auger Electron Spectroscopy (AES), and Scanning Tunnelling Microscopy (STM). Our results demonstrate that the single-crystal Cu foils can be used as substrate for highly ordered thin film for surface studies, and can be an inexpensive alternative to the Cu single crystals.
關鍵字(中) ★ 表面物理
★ 單晶
關鍵字(英) ★ Surface Science
★ Single Crystal
★ Copper
★ Heat Treatment
論文目次 Chapter 1 Introduction 1
Chapter 2 Literature Survey 3
2.1 The Structure of Cu Single Crystals 3
2.2 The Growth of Cu Single Crystal 5
2.3 Hydrogen Embrittlement in Copper 8
2.4 Growth of thin films on Cu(111) Surface 9
Chapter 3 Experimental Set Up 20
3.1 Ultra-High Vacuum System 20
3.1.1 Dry-Scroll Pump 20
3.1.2 Turbomolecular Pump 20
3.1.3 Ion Pump 21
3.1.4 Titanium Sublimation Pump (TSP) 21
3.1.5 Cold Cathode Gauge 22
3.1.6 Ionization Gauge 22
3.2 Low Energy Electron Diffraction 23
3.3 Sputter Gun 25
3.4 Auger Electron Spectroscopy 25
3.5 STM 26
3.6 Experimental Set-Up 27
3.7 Evaporator 28
3.8 Experimental Methods 29
3.8.1 Sample Growth: Preparation 29
3.8.2 Sample Growth: Heat treatment 29
3.8.3 Oxidation 30
3.8.4 Removing Oxide Layers 30
3.8.5 Sample Characterization by LEED 31
3.8.6 Grain Measurement 32
Chapter 4 Results and Discussions 44
4.1 Different Conditions of Heat Treatment 45
4.1.1 Thickness 45
4.1.2 Duration of Heat Treatment 45
4.1.3 Temperature 46
4.1.4 Contact-Free Annealing 46
4.1.5 Conclusion 46
4.4 Further Discussion and Possible Future Works 49
Chapter 5 Conclusion 59
Bibliography 60
參考文獻 Bibliography
[1] Cho, Y. C., Lee, S., Ajmal, M., Kim, W.-K., Cho, C. R., Jeong, S.-Y., Park, J. H., Park, S. E., Park, S., Pak, H.-K., & Kim, H. C. (2010). Copper better than silver: Electrical resistivity of the grain-free single-crystal copper wire. Crystal Growth & Design, 10(6), 2780–2784. https://doi.org/10.1021/cg1003808
[2] Ajmal, M., Lee, S., Cho, Y. C., Kim, S. J., Park, S. E., Cho, C. R., & Jeong, S.-Y. (2012). Fabrication of the best conductor from single-crystal copper and the contribution of grain boundaries to the Debye Temperature. CrystEngComm, 14(4), 1463–1467. https://doi.org/10.1039/c1ce06026k
[3] Versnyder, F. I., & Shank, M. E. (1970). The development of columnar grain and single crystal high temperature materials through directional solidification. Materials Science and Engineering, 6(4), 213–247. https://doi.org/10.1016/0025-5416(70)90050-9
[4] Jin, S., & Ruoff, R. S. (2019). Preparation and uses of large area single crystal metal foils. APL Materials, 7(10), 100905. https://doi.org/10.1063/1.5114861
[5] Jin, S., Huang, M., Kwon, Y., Zhang, L., Li, B-W., Oh, S., Dong, J., Luo, D., Biswal, M., Cunning, B. V., Bakharev, P. V., Moon, I., Yoo, W. J., Camacho-Mojica, D. C., Kim, Y.-J., Lee, S. H., Wang, B., Seong, W. K., Saxena, M., Ding, F., Shin, H-J., Ruoff, R. S. (2018). Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science, 362(6418), 1021–1025. https://doi.org/10.1126/science.aao3373
[6] Xu, X., Zhang, Z., Dong, J., Yi, D., Niu, J., Wu, M., Lin, L., Yin, R., Li, M., Zhou, J., Wang, S., Sun, J., Duan, X., Gao, P., Jiang, Y., Wu, X., Peng, H., Ruoff, R. S., Liu, Z., Yu, D., Wang, E., Ding, F., Liu, K. (2017). Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial cu foil. Science Bulletin, 62(15), 1074–1080. https://doi.org/10.1016/j.scib.2017.07.005
[7] Wu, M., Zhang, Z., Xu, X., Zhang, Z., Duan, Y., Dong, J., Qiao, R., You, S., Wang, L., Qi, J., Zou, D., Shang, N., Yang, Y., Li, H., Zhu, L., Sun, J., Yu, H., Gao, P., Bai, X., Jiang, Y., Wang Z-J., Ding, F., Yu, D., Wang, E., Liu, K. (2020). Seeded growth of large single-crystal copper foils with high-index facets. Nature, 581(7809), 406–410. https://doi.org/10.1038/s41586-020-2298-5
[8] Wang, L., Xu, X., Zhang, L., Qiao, R., Wu, M., Wang, Z., Zhang, S., Liang, J., Zhang, Z., Zhang, Z., Chen, W., Xie, X., Zong, J., Shan, Y., Guo, Y., Willinger, M., Wu, H., Li, Q., Wang, W., Gao, P., Wu, S., Zhang, Y., Jiang, Y., Yu, D., Wang, E., Bai, X., Wang, Z-J., Ding, F., Liu, K. (2019). Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature, 570(7759), 91–95. https://doi.org/10.1038/s41586-019-1226-z
[9] Callister, W.D. and Rethwisch, D. G. (2011). Materials Science and Engineering An Introduction Eight Edition. Wiley & Sons
[10] Deal, A., Hooghan, T., & Eades, A. (2008). Energy-filtered electron backscatter diffraction. Ultramicroscopy, 108(2), 116–125. https://doi.org/10.1016/j.ultramic.2007.03.010
[11] Lüth, H. (2015). Solid Surfaces, Interfaces and Thin Films. 6th ed. Cham: Springer International Publishing
[12] Attard, G. and Barnes, C. (1998). Surfaces. New York: Oxford University Press.
[13] Kim, S. J., Kim, S., Lee, J., Jo, Y., Seo, Y. S., Lee, M., Lee, Y., Cho, C. R., Kim, J., Cheon, M., Hwang, J., Kim, Y. I., Kim, Y. H., Kim, Y. M., Soon, A., Choi, M., Choi, W. S., Jeong, S. Y., & Lee, Y. H. (2021). Color of copper/copper oxide. Advanced Materials, 33(15), 2007345. https://doi.org/10.1002/adma.202007345
[14] Zhang, Z., Xu, X., Zhang, Z., Wu, M., Wang, J., Liu, C., Shang, N., Wang, J., Gao, P., Yu, D., Wang, E., & Liu, K. (2018). Identification of copper Surface index by Optical Contrast. Advanced Materials Interfaces, 5(18), 1800377. https://doi.org/10.1002/admi.201800377
[15] Girard, Y., Chacon, C., de Abreu, G., Lagoute, J., Repain, V., & Rousset, S. (2013). Growth of Bi on Cu(111): Alloying And dealloying transitions. Surface Science, 617, 118–123. https://doi.org/10.1016/j.susc.2013.06.015
[16] Kaminski, D., Poodt, P., Aret, E., Radenovic, N., & Vlieg, E. (2005). Surface Alloys, Overlayer And Incommensurate Structures of Bi on Cu(111). Surface Science, 575(3), 233–246. https://doi.org/10.1016/j.susc.2004.11.001
[17] Varian Associates, Inc. (1992). Basic Vacuum Practice 3rd Edition. Lexington
[18] Fukuda, T., & Menz, W. (1998). Handbook of Sensors and Actuators. Elsevier Science.
[19] Fischer, Ø., Kugler, M., Maggio-Aprile, I., Berthod, C., & Renner, C. (2007). Scanning tunneling spectroscopy of high-temperature superconductors. Reviews of Modern Physics, 79(1), 353–419. https://doi.org/10.1103/revmodphys.79.353
指導教授 陸大安(Dah-An Luh) 審核日期 2021-9-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明