博碩士論文 108223018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:92 、訪客IP:3.135.184.255
姓名 許哲叡(Che-Jui Hsu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用深共熔溶劑結合超音波輔助液液微萃取法檢測茶飲中的BTRs與BTHs殘留
相關論文
★ 以質譜技術探討非共價鍵結蛋白質聚合物之結構★ 以液相層析質譜儀檢測水樣與生物檢體中 全氟界面活性劑之濃度
★ 利用液相層析串聯質譜技術檢測水環境中藥物殘留物之方法開發與應用★ 直鏈式烷基苯基二甲基銨鹽類陽離子型界面活性劑在水環境中微量檢測方法的研究
★ 芳香族磺酸鹽類有機污染物在水環境中的分析與研究★ 以固相萃取及氣相層析質譜儀對水環境中壬基苯酚類 持久性有機污染物之分析與研究
★ 以固相萃取法及氣相層析質譜儀對水環境中動情激素類有機污染物之分析與研究★ 利用熱裂解直接高溫衍生化法快速分析直鏈式烷基三甲基銨鹽之方法建立與探討
★ 利用感應偶合電漿質譜儀檢測半導體製程用化學品中微量金屬不純物之分析研究★ 應用毛細管電泳間接偵測方法分離四級銨鹽界面活性劑
★ 利用毛細管電泳結合線上濃縮方法分離奈磺酸鹽之機制探討★ 快速分析水環境中醫療藥品殘留物之研究與探討
★ 以毛細管電泳法與電灑游離質譜法探討內包錯合物之研究★ 以氣相及液相層析質譜儀分析具荷爾蒙效應物質之方法開發
★ 以離子配對高效液相層析儀檢測螢光增白劑在不同基質中之研究★ 以氣相層析質譜儀檢測具荷爾蒙效應添加劑之方法開發與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究開發一種靈敏、簡單且對環境友善的方法檢測不同茶湯中的八種 Benzotriazoles (BTRs) 和 Benzothiazoles (BTHs)。茶湯樣品的前處理以深共熔溶劑結合超音波震盪進行液液微萃取。深共熔溶劑為一個合成快速,對環境友善、低揮發性的萃取劑,其中的氯化膽鹼具生物相容性。氯化膽鹼和 4−氯酚以莫耳數比 1 : 3 形成疏水性的深共熔溶劑萃取茶湯中的待測物,再以超高效液相層析高解析度串聯式質譜儀 (UHPLC−QTOF−MS) 進行分析。
再最佳化時,以 Design expert 軟體進行最佳化模擬,首先以 Multilevel categoric design 進行種類實驗的最佳化,結果以深共熔溶劑比例1 : 3、萃取的機械力為超音波震盪、不冰浴直接離心,得到最佳回收率。接著,利用 Face-centered Central Composite Design 的多因子實驗設計和反應曲面法及多變量分析 (ANOVA) 進行各項變因的最佳化,結果以萃取劑的體積 800 μL、超音波溫度 55℃、超音波震盪的時間 5 分鐘為最佳回收率。接著離心之後利用甲醇定量至 1 毫升,最後取其中 2 μL 的樣品注入至 UHPLC−QTOF−MS。
將本研究將開發的方法進行偵測極限 (LOD) 及定量極限 (LOQ) 的分析,得到的濃度分別介於 0.1 ~ 7.5 ng/mL 及 0.15 ~ 20 ng/mL 之間,再藉由 Inter−day 和 Intra−day 的測試精密度,相對標準偏差 (RSD) 皆小於16 %,說明此方法有良好的再現性。最後在茶湯中也成功測出茶中含 BTHs 的存在。
摘要(英) In this study, a sensitive, simple and environmental−friendly method for the determination of eight Benzotriazoles (BTRs) and Benzothiazoles (BTHs) derivatives in tea beverages was developed. The target analytes were extracted from tea beverages using deep eutectic solvent−based ultrasound−assisted liquid−liquid microextraction (DES−USALLME). DESs are a group of novel “green” solvents, and the benefits of DESs include: starting materials are affordable, can be easily prepared at room temperature, have low or negligible toxicity, and can be tuned for hydrophobic or hydrophilic organic analytes. A hydrophobic DES was used in this study, which based on the mixture of choline chloride (as a hydrogen bond acceptor) and 4−chlorophenol (as a hydrogen bond donor) at molar ratio of 1 : 3. The determination of target analytes was performed by the combination of ultrahigh− performance liquid chromatography quadrupole time−of−flight mass spectrometry (UHPLC−QTOF−MS).
The parameters of DES−USALLME were screened and optimized by multivariate experimental design base on Multilevel categoric design and Face-centered Central Composite Design plus with response surface design and analysis of variance (ANOVA), respectively. For Multilevel categoric design screening, the optimal selections were: molar ratio of DES was 1 : 3, the extraction mechanical force was ultrasonication, and no required ice bath after ultrasonication. Then, the optimal conditions for Face-centered Central Composite Design were: 800 μL of DES, and sonicated for 5 mins in ultrasonic bath at 55 ℃. After optimization, the method was validated and shown to possess low limits of quantification (LOQs) ranging from 0.15 to 20 ng/mL, high precisions (less than 16%) for both inter-day and intra-day analysis. The developed method was then successfully applied for the analysis of some selected BTRs and BTHs in tea beverages.
關鍵字(中) ★ 深共熔溶劑
★ 苯並三唑
★ 苯並噻唑
★ 液液微萃取
★ 茶湯樣品
關鍵字(英) ★ Deep eutectic solvent
★ Benzotriazoles
★ Benzothiazoles
★ microextraction
★ tea samples
論文目次 目錄
第一章 前言 1
1−1 研究源起 1
1−2 研究目標 2
第二章 文獻回顧 3
2−1 綠色化學溶劑 3
2−1−1 離子液體的介紹 3
2−1−1−1 離子液體的起源 4
2−1−1−2 離子液體的性質 4
2−1−2 深共熔溶劑 5
2−2 分散液液微萃取 7
2−2−1 液液萃取的發展 7
2−2−2 分散液液微萃取 8
2−2−3 分散液液微萃取影響因素 9
2−2−4 分散液液微萃取法發展 10
2−2−5 深共熔溶劑結合超音波輔助液液微萃取法 12
2−3 超高效液相層析串聯質譜儀 13
2−4 待測物介紹 14
2−4−1 Benzotriazoles and Benzothiazoles 介紹 14
2−4−2 BTRs 及 BTHs 來源及生物影響 16
2−4−3 毒性研究 17
2−4−4 每日暴露量 18
2−4−5 相關規範 19
2−4−6 相關檢測文獻 19
第三章 實驗藥品、儀器與流程 23
3−1 實驗藥品與儀器 23
3−1−1 實驗藥品 23
3−1−2 實驗儀器與設備 24
3−2 實驗流程 25
3−2−1標準品配製 25
3−2−2 超高效液相層析串聯質譜儀參數設定 26
3−2−3 質量校正 28
3−2−4 真實樣品製備 29
3−2−5 深共熔溶劑的製備 30
3−2−6 萃取方法 31
第四章 結果與討論 33
4−1 待測物 UHPLC−QTOF−MS 的測定結果 33
4−1−1 層析圖圖譜 33
4−1−2 質譜圖圖譜 35
4−2 深共熔溶劑的探討 37
4−2−1 深共熔溶劑的選擇 37
4−2−2 深共熔溶劑的密度與黏度 37
4−2−3 深共熔溶劑FT−IR 圖譜 39
4−2−4 深共熔溶劑在 NMR 圖譜 40
4−3 單因子最佳化探討 42
4−3−1 深共熔溶劑的比例 42
4−3−2 深共熔溶劑的體積 43
4−3−3 鹽類對萃取的影響 44
4−3−4 萃取機械力對萃取的影響 45
4−3−5 超音波震盪水浴溫度對萃取的影響 46
4−3−6 超音波震盪時間對萃取的影響 47
4−4 實驗設計探討 48
4−4−1 Multilevel categoric design 48
4−4−2 半常態描點圖 50
4−4−3 ANOVA 分析 51
4−4−4 顯著變因探討 52
4−4−5 殘差分布圖 54
4−5 Face-centered Central Composite Design (FCCCD) 55
4−5−1 FCCCD 因子階層與因子模型結果 55
4−5−2 ANOVA 分析與因子交互作用探討 58
4−5−3 殘差分布圖 60
4−5−4 FCCCD最佳化結果 61
4−6 待測物偵測極限與檢量線 62
4−7 真實樣品的檢測 64
4−8 方法的精密度與準確度 65
4−9 文獻比較 66
4−10 Analytical Eco−Scale 68
第五章 結論 71
第六章 參考文獻 73
參考文獻 第六章 參考文獻
 台灣質譜學會,質譜分析技術原理與應用,2015。
 飲料店營業額創新高 疫情考驗經營智慧,張婉瑤,工商時報,04/2020。
 Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V.. Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, 2003, 1, 70-71.
 Anastas, P., & Eghbali, N. Green chemistry: principles and practice. Chemical Society Reviews, 2010, 39, 301-312.
 Ao, Y. T., Chen, Y. C., & Ding, W. H.. Deep eutectic solvent-based ultrasound-assisted emulsification microextraction for the rapid determination of benzotriazole and benzothiazole derivatives in surface water samples. Journal of Hazardous Materials, 2021, 401, 123383.
 Asheim, J., Vike-Jonas, K., Gonzalez, S. V., Lierhagen, S., Venkatraman, V., Veivåg, I. L. S., Snilsberg B., Flaten, T. P., & Asimakopoulos, A. G.. Benzotriazoles, benzothiazoles and trace elements in an urban road setting in Trondheim, Norway: Re-visiting the chemical markers of traffic pollution. Science of The Total Environment, 2019, 649, 703-711.
 Asimakopoulos, A. G., Bletsou, A. A., Wu, Q., Thomaidis, N. S., & Kannan, K.. Determination of benzotriazoles and benzothiazoles in human urine by liquid chromatography-tandem mass spectrometry. Analytical chemistry, 2013b, 85, 441-448.
 Aubert, C., Baumann, S., & Arguel, H.. Optimization of the analysis of flavor volatile compounds by liquid− liquid microextraction (LLME). Application to the aroma analysis of melons, peaches, grapes, strawberries, and tomatoes. Journal of Agricultural and Food Chemistry, 2005, 53, 8881-8895.
 Chen, C. H., Chung, W. H., & Ding, W. H.. Determination of benzotriazole and benzothiazole derivatives in marketed fish by double-vortex-ultrasonic assisted matrix solid-phase dispersion and ultrahigh-performance liquid chromatography-high resolution mass spectrometry. Food Chemistry, 2020, 333, 127516.
 Chen, X., & Ye, N.. Graphene oxide-reinforced hollow fiber solid-phase microextraction coupled with high-performance liquid chromatography for the determination of cephalosporins in milk samples. Food Analytical Methods, 2016, 9, 2452-2462.
 Chum, H. L., Koch, V. R., Miller, L. L., & Osteryoung, R. A.. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. Journal of the American Chemical Society, 1975, 97, 3264-3265.


 de Souza Pinheiro, A., & de Andrade, J. B.. Development, validation and application of a SDME/GC-FID methodology for the multiresidue determination of organophosphate and pyrethroid pesticides in water. Talanta, 2009, 79, 1354-1359.
 Douny, C., Dufourny, S., Brose, F., Verachtert, P., Rondia, P., Lebrun, S., Marzorati, M., Everaert, N., Delcenserie, V., & Scippo, M. L.. Development of an analytical method to detect short-chain fatty acids by SPME-GC–MS in samples coming from an in vitro gastrointestinal model. Journal of Chromatography B, 2019, 1124, 188-196.
 Farajzadeh, M. A., Hojghan, A. S., & Mogaddam, M. R. A.. Development of a new temperature-controlled liquid phase microextraction using deep eutectic solvent for extraction and preconcentration of diazinon, metalaxyl, bromopropylate, oxadiazon, and fenazaquin pesticides from fruit juice and vegetable samples followed by gas chromatography-flame ionization detection. Journal of Food Composition and Analysis, 2018, 66, 90-97.
 Ferrey, M. L., Hamilton, M. C., Backe, W. J., & Anderson, K. E.. Pharmaceuticals and other anthropogenic chemicals in atmospheric particulates and precipitation. Science of the Total Environment, 2018, 612, 1488-1497.
 Francisco, M., van den Bruinhorst, A., & Kroon, M. C.. Low‐transition‐temperature mixtures (LTTMs): A new generation of designer solvents. Angewandte Chemie International Edition, 2013, 52, 3074-3085.
 Gałuszka, A., Migaszewski, Z. M., Konieczka, P., & Namieśnik, J.. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends in Analytical Chemistry, 2012, 37, 61-72.
 Herrero, P., Borrull, F., Pocurull, E., & Marcé, R. M.. Efficient tandem solid-phase extraction and liquid chromatography-triple quadrupole mass spectrometry method to determine polar benzotriazole, benzothiazole and benzenesulfonamide contaminants in environmental water samples. Journal of Chromatography A, 2013, 1309, 22-32
 Herrero, P., Borrull, F., Pocurull, E., & Marcé, R. M.. An overview of analytical methods and occurrence of benzotriazoles, benzothiazoles and benzenesulfonamides in the environment. TrAC Trends in Analytical Chemistry, 2014a, 62, 46-55.
 Herrero, P., Borrull, F., Pocurull, E., & Marcé, R. M.. A quick, easy, cheap, effective, rugged and safe extraction method followed by liquid chromatography-(Orbitrap) high resolution mass spectrometry to determine benzotriazole, benzothiazole and benzenesulfonamide derivates in sewage sludge. Journal of Chromatography A, 2014b, 1339, 34-41.


 Hidalgo‐Serrano, M., Borrull, F., Marcé, R. M., & Pocurull, E.. Presence of benzotriazoles, benzothiazoles and benzenesulfonamides in surface water samples by liquid chromatography coupled to high‐resolution mass spectrometry. Separation Science Plus, 2019, 2, 72-80.
 Huang, Z., Zhang, Y., Wang, L., Ding, L., Wang, M., Yan, H., Li Y., Zhu, S. Simultaneous determination of 103 pesticide residues in tea samples by LC‐MS/MS. Journal of separation science, 2009, 32, 1294-1301.
 Janna, H., Scrimshaw, M. D., Williams, R. J., Churchley, J., & Sumpter, J. P.. From dishwasher to tap? Xenobiotic substances benzotriazole and tolyltriazole in the environment, Environmental Science & Technology, 2011, 45, 3858-3864.
 Le Bozec, L., & Moody, C. J.. Naturally occurring nitrogen–sulfur compounds. The benzothiazole alkaloids. Australian journal of Chemistry, 2009, 62, 639-647.
 Leong, M. I., & Huang, S. D.. Dispersive liquid–liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection. Journal of Chromatography A, 2008, 1211, 8-12.
 Liao, C., Kim, U. J., & Kannan, K.. A review of environmental occurrence, fate, exposure, and toxicity of benzothiazoles. Environmental Science & Technology, 2018, 52, 5007-5026.
 Li, J., Zhao, H., Zhou, Y., Xu, S., & Cai, Z.. Determination of benzotriazoles and benzothiazoles in human urine by UHPLC-TQMS. Journal of Chromatography B, 2017, 1070, 70-75.
 Liu, W., Xue, J., & Kannan, K.. Occurrence of and exposure to benzothiazoles and benzotriazoles from textiles and infant clothing. Science of the Total Environment, 2017, 592, 91-96.
 Magiera, S., & Gülmez, Ş.. Ultrasound-assisted emulsification microextraction combined with ultra-high performance liquid chromatography–tandem mass spectrometry for the analysis of ibuprofen and its metabolites in human urine. Journal of Pharmaceutical and Biomedical Analysis, 2014, 92, 193-202.
 Makoś, P., Fernandes, A., Przyjazny, A., & Boczkaj, G.. Sample preparation procedure using extraction and derivatization of carboxylic acids from aqueous samples by means of deep eutectic solvents for gas chromatographic-mass spectrometric analysis. Journal of Chromatography A, 2018, 1555, 10-19.
 Malaeke, H., Housaindokht, M. R., Monhemi, H., & Izadyar, M.. Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification. Journal of Molecular Liquids, 2018, 263, 193-199.
 Marsh, K. N., Boxall, J. A., & Lichtenthaler, R.. Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilibria, 2004, 219, 93-98.

 McNeill, K. S., & Cancilla, D. A.. Detection of triazole deicing additives in soil samples from airports with low, mid, and large volume aircraft deicing activities. Bulletin of Environmental Contamination and Toxicology, 2009, 82, 265-269.
 Naccarato, A., Gionfriddo, E., Sindona, G., & Tagarelli, A.. Simultaneous determination of benzothiazoles, benzotriazoles and benzosulfonamides by solid phase microextraction-gas chromatography-triple quadrupole mass spectrometry in environmental aqueous matrices and human urine. Journal of Chromatography A, 2014, 1338, 164-173.
 Nagatomi, Y., Yoshioka, T., Yanagisawa, M., Uyama, A., & Mochizuki, N. Simultaneous LC-MS/MS analysis of glyphosate, glufosinate, and their metabolic products in beer, barley tea, and their ingredients. Bioscience, Biotechnology, and Biochemistry, 2013, 77, 2218-2221.
 Nuñez, A., Vallecillos, L., Marcé, R. M., & Borrull, F.. Occurrence and risk assessment of benzothiazole, benzotriazole and benzenesulfonamide derivatives in airborne particulate matter from an industrial area in Spain.Science of The Total Environment, 2020, 708, 135065.
 Oellig, C., & Schwack, W. Planar solid phase extraction clean-up for pesticide residue analysis in tea by liquid chromatography–mass spectrometry. Journal of Chromatography A, 2012, 1260, 42-53.
 Pallares, N., Font, G., Mañes, J., & Ferrer, E. Multimycotoxin LC–MS/MS analysis in tea beverages after dispersive liquid–liquid microextraction (DLLME). Journal of Agricultural and Food Chemistry, 2017, 65, 10282-10289.
 Pena, M. T., Vecino-Bello, X., Casais, M. C., Mejuto, M. C., & Cela, R.. Optimization of a dispersive liquid–liquid microextraction method for the analysis of benzotriazoles and benzothiazoles in water samples. Analytical and Bioanalytical Chemistry, 2012, 402, 1679-1695.
 Popescu, A. M., Donath, C., & Constantin, V.. Density, viscosity and electrical conductivity of three choline chloride based ionic liquids.Bulg. Chem. Commun, 2014,46, 452-457.
 Quigley, A., Cummins, W., & Connolly, D.. Dispersive liquid-liquid microextraction in the analysis of milk and dairy products: a review. Journal of Chemistry, 2016, 2016.
 Rai, S., Singh, A. K., Srivastava, A., Yadav, S., Siddiqui, M. H., & Mudiam, M. K. R.. Comparative evaluation of QuEChERS method coupled to DLLME extraction for the analysis of multiresidue pesticides in vegetables and fruits by gas chromatography-mass spectrometry. Food Analytical Methods, 2016, 9, 2656-2669.
 Rezaee, M., Assadi, Y., Hosseini, M. R. M., Aghaee, E., Ahmadi, F., & Berijani, S.. Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A, 2006, 1116, 1-9.
 Salas, D., Borrull, F., Marcé, R. M., & Fontanals, N.. Study of the retention of benzotriazoles, benzothiazoles and benzenesulfonamides in mixed-mode solid-phase extraction in environmental samples. Journal of Chromatography A, 2016, 1444, 21-31.
 Seddon, K. R., Stark, A., & Torres, M. J.. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem, 2000, 72, 2275-2287.
 Sheldon, R.. Catalytic reactions in ionic liquids. Chemical Communications, 2001 23, 2399-2407.
 Smith, E. L., Abbott, A. P., & Ryder, K. S.. Deep eutectic solvents (DESs) and their applications. Chemical Reviews, 2014, 114, 11060-11082.
 Trabalón, L., Nadal, M., Borrull, F., & Pocurull, E.. Determination of benzothiazoles in seafood species by subcritical water extraction followed by solid-phase microextraction-gas chromatography-tandem mass spectrometry: estimating the dietary intake. Analytical and Bioanalytical Chemistry, 2017, 409, 5513-5522.
 Wang, L., Asimakopoulos, A. G., Moon, H. B., Nakata, H., & Kannan, K.. Benzotriazole, benzothiazole, and benzophenone compounds in indoor dust from the United States and East Asian countries. Environmental Science & Technology, 2013, 47, 4752-4759.
 Wilkes, J. S., & Zaworotko, M. J.. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications, 1992, 13, 965-967.
 Wu, Q., Feng, C., Zhao, G., Wang, C., & Wang, Z.. Graphene‐coated fiber for solid‐phase microextraction of triazine herbicides in water samples. Journal of Separation Science, 2012, 35, 193-199.
 Xue, J., Wan, Y., & Kannan, K.. Occurrence of benzotriazoles (BTRs) in indoor air from Albany, New York, USA, and its implications for inhalation exposure. Toxicological & Environmental Chemistry, 2017, 99, 402-414.
 Xu, P., Zheng, G. W., Zong, M. H., Li, N., & Lou, W. Y.. Recent progress on deep eutectic solvents in biocatalysis. Bioresources and Bioprocessing, 2017, 4, 1-18.
 Van Leerdam, J. A., Hogenboom, A. C., van der Kooi, M. M., & de Voogt, P.. Determination of polar 1H-benzotriazoles and benzothiazoles in water by solid-phase extraction and liquid chromatography LTQ FT Orbitrap mass spectrometry. International Journal of Mass Spectrometry, 2009, 282, 99-107.
 Yamamoto, K., Hayashi, M., Murakami, Y., Araki, Y., Otsuka, Y., Kashiwagi, T., ... & Ukeda, H. Development of LC-MS/MS analysis of cyclic dipeptides and its application to tea extract. Bioscience, Biotechnology, and Biochemistry, 2016, 80, 172-177.
指導教授 丁望賢(Wang-Hsien Ding) 審核日期 2021-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明