博碩士論文 108223044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.191.215.138
姓名 徐培翔(Pei-Hsiang Hsu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用溫和水相法快速封包酵素進Zn-MOF-74合成生物複合材料
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-23以後開放)
摘要(中) 酵素因其高效催化特定反應的能力在工業上被廣泛應用,但也因為酵素在嚴苛環境下的不穩定性及催化完後難以與產物在反應溶液中分離,在使用上有許多限制。因此對於能增加酵素穩定性與實用性上的酵素固定化顯得格外重要且有潛力。本實驗室於2015年首次開發出以原位創新合成法,在水相室溫下以類沸石咪唑骨架材料ZIF-90封包過氧化氫酶,利用金屬有機骨架材料的孔洞性,允許受質進入材料催化的同時又可以防止大分子蛋白質水解酶的作用,提供紡織工業漂白水議題的解決辦法。又於2017年發表有關生物性複合材料更進一步的研究,金屬有機骨架材料對酵素提供空間侷限性的效果,降低酵素在展開劑尿素的環境下所造成結構展開及失活程度。然而因為類沸石咪唑骨架材料的小孔洞在受質和酵素的選擇上造成了限制。為拓展更大孔洞MOFs的綠色合成法,本實驗室緊接著於2019年利用機械力球磨法成功用UIO-66和Zn-MOF-74等大孔洞金屬有機骨架材料來包覆酵素,拓展了此類生物性複合材料的應用範圍。
雖然機械力球磨法只需要少量溶劑,而且合成時的能量傳遞非常有效率,是個非常不錯的綠色合成法,然而機械力球磨法運用在生物性複合材料的時候會遇到酵素因球磨時間增加而活性損失的情況。因此本篇論文致力於大孔洞MOFs水相常溫且綠色合成法,並將其運用於生物性複合材料,以利於研究大分子的生化現象。
本篇論文成功在生物友善且水相的環境下於十分鐘快速合成Zn-MOF-74並包封酵素,利用Zn-MOF-74一維且14 Å的大孔洞不但讓受質質傳更有效率,還可以減少空間侷限性對酵素的影響。大幅提升酵素固定化後之活性同時保有金屬有機骨架材料賦予酵素的尺寸篩選性,以避免酵素受到蛋白酶的水解。並運用有較大受質的胰凝乳蛋白酶展現Zn-MOF-74在生物性複合材料領域中擁有更廣的應用。
摘要(英) Enzymes have been widely used in industrial applications due to their high efficiency and specificity in catalyzing reactions. However, there are lots of restrictions owing to their instability in harsh environments and their difficulty in separating from productions in the reaction solution. Therefore, it is particularly important and potential for enzyme immobilization that can increase the stability and practicality of the enzyme. In our previous report in 2015, we developed an innovative in-situ de novo synthesis method to encapsulate catalase with a zeolitic imidazolate framework-90, ZIF-90 a sub group of Metal-organic Frameworks (MOFs), at room temperature under aqueous in which MOFs is capable of protecting embedding enzyme from protease and maintaining its biological activity. In 2017 our laboratory published a further study on biocomposites. The MOFs is able to provide spatial confinement for enzymes, reducing the structural expansion under the environment of denature reagent, urea. However, the small pores of the zeolitic imidazolate framework limit the selectivity of enzymes and substrates.
Therefore, our laboratory had reported about encapsulating enzymes with large-pore metal-organic frameworks such as UIO-66 and Zn-MOF-74 via mechanochemistry, ball-milling, method in order to expand the applications of biocomposites.The ball-milling method only requires a few amounts of solvent, and the energy transfer during synthesis is very efficient, also it is a very green method. However, mechanochemistry has encountered problems such as enzymes slightly denatured during the ball milling process. To avoid this problem, and investigate the further study of large-pore metal-organic frameworks biocomposites, we look forward to developing a green synthesis method for obtaining MOFs with large-apeture under mild water-based at room temperature and extand more applications in industry. In this study, we found that CAT and CHT molecules can be encapsulated into Zn-MOF-74 materials, which has unique 1D hexagonal channels and nanometer-scale pore apertures, by using the de novo mild water-based approach under aqueous conditions at room temperature. The prepared CAT@Zn-MOF-74 and CHT@Zn-MOF-74 biocomposites retained the peroxidase and peptide digestion activities of CAT and CHT, respectively. The Zn-MOF-74 support provides an interesting size-sheltering effect and confers antiunfolding functions to CAT; it protects CAT from proteinase K and urea. This strategy not only provides a viable solution for developing biocomposites with better biocatalytic activities but also widens the spectrum of guests that can be embedded. As a pivotal first step, we firmly believe that the enzyme@MOF platform based on the de novo approach will pave the way for further applications owing to its extraordinary potential and performance.
關鍵字(中) ★ 金屬有機骨架材料
★ 酵素固定化
★ 生物性複合材料
★ 過氧化氫酶
★ 胰凝乳蛋白酶
關鍵字(英) ★ Metal-organic frameworks
★ Enzyme immobilization
★ Biocomposites
★ Catalase
★ Chymotrypsin
論文目次 摘要 i
Abstract iii
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1. 金屬有機骨架材料 1
1-2. 類沸石咪唑骨架材料-90 3
1-3. 金屬有機骨架材料-74 4
1-4. 酵素固定化於MOFs的發展 6
1-5. 研究動機以及目的 7
第二章 實驗部分 9
2-1. 實驗藥品 9
2-2. 實驗儀器 11
2-2-1. 實驗使用儀器 11
2-2-2. 實驗鑑定儀器 12
2-3. 實驗儀器之原理 14
2-3-1. X射線粉末繞射圖譜 14
2-3-2. 場發射掃描式電子顯微鏡 15
2-3-3. 熱重分析儀 15
2-3-4. 等溫氮氣吸脫附儀 16
2-3-5. 共軛焦雷射掃描顯微鏡 17
2-3-6. 半衰減全反射式傅立葉轉換紅外線光譜 18
2-3-7. 螢光光譜儀 19
2-4. 酵素 21
2-4-1. 過氧化氫酶 21
2-4-2. α-胰凝乳蛋白酶 21
2-4-3. 蛋白酶K 22
2-5. 實驗步驟—MOFs Chemical Biology 23
2-5-1. 金屬有機骨架材料-74材料的合成 23
2-5-2. 金屬有機骨架材料-74包覆酵素的合成 23
2-5-3. 類沸石咪唑骨架材料-90包覆α-胰凝乳蛋白酶的合成 23
2-5-4. 偵測蛋白質濃度 (Bradford Assay) 24
2-5-5. 十二烷基硫酸鈉聚丙醯胺膠體電泳 (SDS-PAGE) 25
2-5-6. FITC標記過氧化氫酶 26
2-5-7. 偵測過氧化氫酶之活性 26
2-5-8. 偵測過氧化氫酶在蛋白酶K環境下之活性檢測 28
2-5-9. 偵測過氧化氫酶在尿素環境下之活性檢測 28
2-5-10. 偵測過氧化氫酶在80°C熱處理後之活性檢測 29
2-5-11. 偵測α-胰凝乳蛋白酶之活性 29
第三章 結果與討論 31
3-1. CAT@Zn-MOF-74之鑑定與活性實驗 31
3-1-1. X射線粉末繞射圖譜分析 31
3-1-2. 掃描式電子顯微鏡影像分析 32
3-1-3. 熱重分析鑑定 33
3-1-4. 氮氣等溫吸脫附分析 34
3-1-5. 半衰減全反射式傅立葉轉換紅外線光譜 35
3-1-6. 十二烷基硫酸鈉聚丙醯胺膠體電泳 36
3-1-7. 共軛焦雷射掃描顯微鏡 37
3-1-8. CAT@Zn-MOF-74於50 mM pH 8.0 Tris 緩衝液之穩定性 38
3-1-9. CAT@Zn-MOF-74酵素溢漏測試 39
3-1-10. 材料於不同pH 值 Tris 緩衝液之穩定性 39
3-1-11. 優化CAT@Zn-MOF-74 的合成方法 43
3-1-12. CAT@Zn-MOF-74在蛋白酶K或尿素環境下活性之探討 46
3-1-13. CAT@ Zn-MOF-74熱誘導結構展開對活性之探討 48
3-1-14. CAT@ Zn-MOF-74和CAT@ZIF-90之活性及結構之探討 49
3-1-15. CAT@Zn-MOF-74 之酵素動力學探討 51
3-1-16. CAT@Zn-MOF-74 五天活性評估 53
3-2. CHT@MOFs材料之鑑定與活性實驗 54
3-2-1. X射線粉末繞射圖譜分析 55
3-2-2. 掃描式電子顯微鏡影像分析 56
3-2-3. 熱重分析鑑定 57
3-2-4. 氮氣等溫吸脫附分析 58
3-2-5. 十二烷基硫酸鈉聚丙醯胺膠體電泳 59
3-2-6. CHT@Zn-MOF-74和CHT@ZIF-90酵素活性之探討 60
第四章 結論以及未來展望 62
參考文獻 63
附錄 68
參考文獻 1. Yaghi, O. M.; Li, G.; Li, H., Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378 (6558), 703-706.
2. Li, H.; Eddaoudi, M.; O′Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279.
3. Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705-714.
4. Furukawa, H.; Cordova, K., O, Keeffe, M.; Yaghi, OM The chemistry and applications of metal-organic frameworks. Science 2013, 341 (6149), 1230444.
5. Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O′Keeffe, M.; Yaghi, O. M., Hydrogen storage in microporous metal-organic frameworks. Science 2003, 300 (5622), 1127-1129.
6. Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chemical reviews 2012, 112 (2), 1196-1231.
7. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C., Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews 2009, 38 (5), 1477-1504.
8. Betard, A.; Fischer, R. A., Metal–organic framework thin films: from fundamentals to applications. Chemical reviews 2012, 112 (2), 1055-1083.
9. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–organic framework materials as chemical sensors. Chemical reviews 2012, 112 (2), 1105-1125.
10. Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y.-B.; Kang, J. K.; Yaghi, O. M., Supercapacitors of nanocrystalline metal–organic frameworks. ACS nano 2014, 8 (7), 7451-7457.
11. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R. E.; Serre, C., Metal–organic frameworks in biomedicine. Chemical reviews 2012, 112 (2), 1232-1268.
12. He, C.; Liu, D.; Lin, W., Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chemical reviews 2015, 115 (19), 11079-11108.
13. Islamoglu, T.; Chen, Z.; Wasson, M. C.; Buru, C. T.; Kirlikovali, K. O.; Afrin, U.; Mian, M. R.; Farha, O. K., Metal–organic frameworks against toxic chemicals. Chemical reviews 2020, 120 (16), 8130-8160.
14. Xu, W.; Yaghi, O. M., Metal–organic frameworks for water harvesting from air, anywhere, anytime. ACS central science 2020, 6 (8), 1348-1354.
15. Stock, N.; Biswas, S., Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical reviews 2012, 112 (2), 933-969.
16. Shieh, F. K.; Wang, S. C.; Leo, S. Y.; Wu, K. C. W., Water‐based synthesis of zeolitic imidazolate framework‐90 (ZIF‐90) with a controllable particle size. Chemistry–A European Journal 2013, 19 (34), 11139-11142.
17. Rabenau, A., The role of hydrothermal synthesis in preparative chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
18. Klinowski, J.; Paz, F. A. A.; Silva, P.; Rocha, J., Microwave-assisted synthesis of metal–organic frameworks. Dalton Transactions 2011, 40 (2), 321-330.
19. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.
20. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214.
21. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical communications 2008, (31), 3642-3644.
22. Seetharaj, R.; Vandana, P.; Arya, P.; Mathew, S., Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian journal of chemistry 2019, 12 (3), 295-315.
23. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’keeffe, M.; Yaghi, O. M., Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. 2009.
24. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks. Journal of the American Chemical Society 2008, 130 (38), 12626-12627.
25. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C.-W., Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal–organic framework microcrystals. Journal of the American Chemical Society 2015, 137 (13), 4276-4279.
26. Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O′Keeffe, M.; Yaghi, O. M., Rod packings and metal− organic frameworks constructed from rod-shaped secondary building units. Journal of the American Chemical Society 2005, 127 (5), 1504-1518.
27. Lu, W.; Wei, Z.; Gu, Z.-Y.; Liu, T.-F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle III, T., Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews 2014, 43 (16), 5561-5593.
28. Rowsell, J. L.; Yaghi, O. M., Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal− organic frameworks. Journal of the American Chemical Society 2006, 128 (4), 1304-1315.
29. Xiao, T.; Liu, D., The most advanced synthesis and a wide range of applications of MOF-74 and its derivatives. Microporous and Mesoporous Materials 2019, 283, 88-103.
30. Liu, Y.; Kabbour, H.; Brown, C. M.; Neumann, D. A.; Ahn, C. C., Increasing the density of adsorbed hydrogen with coordinatively unsaturated metal centers in metal− organic frameworks. Langmuir 2008, 24 (9), 4772-4777.
31. Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S., Large-pore apertures in a series of metal-organic frameworks. science 2012, 336 (6084), 1018-1023.
32. Julien, P. A.; Užarević, K.; Katsenis, A. D.; Kimber, S. A.; Wang, T.; Farha, O. K.; Zhang, Y.; Casaban, J.; Germann, L. S.; Etter, M., In situ monitoring and mechanism of the mechanochemical formation of a microporous MOF-74 framework. Journal of the American Chemical Society 2016, 138 (9), 2929-2932.
33. Wei, T.-H.; Wu, S.-H.; Huang, Y.-D.; Lo, W.-S.; Williams, B. P.; Chen, S.-Y.; Yang, H.-C.; Hsu, Y.-S.; Lin, Z.-Y.; Chen, X.-H., Rapid mechanochemical encapsulation of biocatalysts into robust metal–organic frameworks. Nature communications 2019, 10 (1), 1-8.
34. Koeller, K. M.; Wong, C.-H., Enzymes for chemical synthesis. Nature 2001, 409 (6817), 232-240.
35. Schmid, A.; Dordick, J.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B., Industrial biocatalysis today and tomorrow. nature 2001, 409 (6817), 258-268.
36. Datta, S.; Christena, L. R.; Rajaram, Y. R. S., Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 2013, 3 (1), 1-9.
37. Chen, Y.; Lykourinou, V.; Vetromile, C.; Hoang, T.; Ming, L.-J.; Larsen, R. W.; Ma, S., How can proteins enter the interior of a MOF? Investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows. Journal of the American Chemical Society 2012, 134 (32), 13188-13191.
38. Lykourinou, V.; Chen, Y.; Wang, X.-S.; Meng, L.; Hoang, T.; Ming, L.-J.; Musselman, R. L.; Ma, S., Immobilization of MP-11 into a mesoporous metal–organic framework, MP-11@ mesoMOF: a new platform for enzymatic catalysis. Journal of the American Chemical Society 2011, 133 (27), 10382-10385.
39. Li, P.; Moon, S.-Y.; Guelta, M. A.; Lin, L.; Gómez-Gualdrón, D. A.; Snurr, R. Q.; Harvey, S. P.; Hupp, J. T.; Farha, O. K., Nanosizing a metal–organic framework enzyme carrier for accelerating nerve agent hydrolysis. ACS nano 2016, 10 (10), 9174-9182.
40. Liu, D.-M.; Chen, J.; Shi, Y.-P., Advances on methods and easy separated support materials for enzymes immobilization. TrAC Trends in Analytical Chemistry 2018, 102, 332-342.
41. Bragg, W. H.; Bragg, W. L., The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1913, 88 (605), 428-438.
42. Sing, K. S., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry 1985, 57 (4), 603-619.
43. Vivian, J. T.; Callis, P. R., Mechanisms of tryptophan fluorescence shifts in proteins. Biophysical journal 2001, 80 (5), 2093-2109.
44. Schroeder, W.; Shelton, J. R.; Shelton, J. B.; Olson, B. M., Some amino acid sequences in bovine-liver catalase. Biochimica et Biophysica Acta (BBA)-Specialized Section on Enzymological Subjects 1964, 89 (1), 47-65.
45. Kumar, A.; Venkatesu, P., Overview of the stability of α-chymotrypsin in different solvent media. Chemical Reviews 2012, 112 (7), 4283-4307.
46. Ebeling, W.; Hennrich, N.; Klockow, M.; Metz, H.; Orth, H. D.; Lang, H., Proteinase K from Tritirachium album limber. European Journal of Biochemistry 1974, 47 (1), 91-97.
47. Pähler, A.; Banerjee, A.; Dattagupta, J.; Fujiwara, T.; Lindner, K.; Pal, G.; Suck, D.; Weber, G.; Saenger, W., Three‐dimensional structure of fungal proteinase K reveals similarity to bacterial subtilisin. The EMBO journal 1984, 3 (6), 1311-1314.
48. Wu, C.; Chou, L.-Y.; Long, L.; Si, X.; Lo, W.-S.; Tsung, C.-K.; Li, T., Structural control of uniform MOF-74 microcrystals for the study of adsorption kinetics. ACS applied materials & interfaces 2019, 11 (39), 35820-35826.
49. Sánchez-Sánchez, M.; Getachew, N.; Díaz, K.; Díaz-García, M.; Chebude, Y.; Díaz, I., Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources. Green Chemistry 2015, 17 (3), 1500-1509.
50. Ogura, Y.; Yamazaki, I., Steady-state kinetics of the catalase reaction in the presence of cyanide. The Journal of Biochemistry 1983, 94 (2), 403-408.
51. Jiang, Z.-Y.; Woollard, A. C.; Wolff, S. P., Hydrogen peroxide production during experimental protein glycation. FEBS letters 1990, 268 (1), 69-71.
52. Nelson, D. P.; Kiesow, L. A., Enthalpy of decomposition of hydrogen peroxide by catalase at 25 C (with molar extinction coefficients of H2O2 solutions in the UV). Analytical biochemistry 1972, 49 (2), 474-478.
53. Knierbein, M.; Held, C.; Sadowski, G., The role of molecular interactions on Michaelis constants of α-chymotrypsin catalyzed peptide hydrolyses. The Journal of Chemical Thermodynamics 2020, 148, 106142.
54. De, M.; Chou, S. S.; Dravid, V. P., Graphene oxide as an enzyme inhibitor: modulation of activity of α-chymotrypsin. Journal of the American Chemical Society 2011, 133 (44), 17524-17527.
55. Díaz-García, M.; Sánchez-Sánchez, M., Synthesis and characterization of a new Cd-based metal-organic framework isostructural with MOF-74/CPO-27 materials. Microporous and mesoporous materials 2014, 190, 248-254.
56. Yue, Y.; Qiao, Z.-A.; Fulvio, P. F.; Binder, A. J.; Tian, C.; Chen, J.; Nelson, K. M.; Zhu, X.; Dai, S., Template-free synthesis of hierarchical porous metal–organic frameworks. Journal of the American Chemical Society 2013, 135 (26), 9572-9575.
57. Zhang, L.; Wang, L. L.; Feng, X. F.; Luo, M. B.; Luo, F., Coumarin-modified microporous-mesoporous Zn-MOF-74 showing ultra-high uptake capacity and photo-switched storage/release of UVI ions. Journal of hazardous materials 2016, 311, 30-36.
58. Chen, Y.; Han, S.; Li, X.; Zhang, Z.; Ma, S., Why does enzyme not leach from metal–organic frameworks (MOFs)? Unveiling the interactions between an enzyme molecule and a MOF. Inorganic chemistry 2014, 53 (19), 10006-10008.
59. Kilpin, K. J.; Dyson, P. J., Enzyme inhibition by metal complexes: concepts, strategies and applications. Chemical Science 2013, 4 (4), 1410-1419.
60. Monera, O. D.; Kay, C. M.; Hodges, R. S., Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Science 1994, 3 (11), 1984-1991.
61. Liao, F.-S.; Lo, W.-S.; Hsu, Y.-S.; Wu, C.-C.; Wang, S.-C.; Shieh, F.-K.; Morabito, J. V.; Chou, L.-Y.; Wu, K. C.-W.; Tsung, C.-K., Shielding against unfolding by embedding enzymes in metal–organic frameworks via a de novo approach. Journal of the American Chemical Society 2017, 139 (19), 6530-6533.
62. Hsu, P.-H.; Chang, C.-C.; Wang, T.-H.; Lam, P. K.; Wei, M.-Y.; Chen, C.-T.; Chen, C.-Y.; Chou, L.-Y.; Shieh, F.-K., Rapid Fabrication of Biocomposites by Encapsulating Enzymes into Zn-MOF-74 via a Mild Water-Based Approach. ACS Applied Materials & Interfaces 2021.
63. Chen, S.-Y.; Lo, W.-S.; Huang, Y.-D.; Si, X.; Liao, F.-S.; Lin, S.-W.; Williams, B. P.; Sun, T.-Q.; Lin, H.-W.; An, Y., Probing Interactions between Metal–Organic Frameworks and Freestanding Enzymes in a Hollow Structure. Nano Letters 2020, 20 (9), 6630-6635.
64. Al-Ajlan, A.; Bailey, G., Purification and characterization of cationic chymotrypsin from the pancreas of the Arabian camel (Camelus dromedarius). Molecular and cellular biochemistry 2000, 203 (1), 73-78.
65. Huang, C.; Gu, X.; Su, X.; Xu, Z.; Liu, R.; Zhu, H., Controllable synthesis of Co-MOF-74 catalysts and their application in catalytic oxidation of toluene. Journal of Solid State Chemistry 2020, 289, 121497.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2021-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明