博碩士論文 108223049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:44.200.140.218
姓名 蔡源寧(Yuan-ning tsai)  查詢紙本館藏   畢業系所 化學學系
論文名稱 含高度共軛芳香雜環之釕錯合物的合成以應用於染料敏化太陽能電池
相關論文
★ 含3,4-乙烯二氧噻吩輔助配位基之鋨、釕金屬錯合物合成與其在染料敏化太陽能電池的應用★ 應用於染料敏化太陽能電池之釕金屬錯合物合成與其性質探討
★ 含共軛配位基之釕錯合物合成與其在染料敏化太陽能電池的應用★ 新型三吡啶釕錯合物光敏化染料的合成與性質探討
★ 釕錯合物敏化太陽能電池元件優化與光伏特性探討★ 金屬錯合物染料敏化太陽能電池的元件優化
★ 新型三吡啶鋨錯合物染料 合成與配位基效應之探討★ 多聯吡啶釕錯合物光敏化染料的合成與性質探討
★ 有機共吸附染料的合成與性質探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 染料敏化太陽能電池(Dye-sensitized solar cells,DSCs),由於其光電轉換機制的獨特性、材料的多樣性、元件的低製造成本與良好的光電轉換效率,相關研究極為眾多,其中,使用雙吡啶配位的釕錯合物染料因為可使元件同時具有高效率與高穩定性而備受重視,儘管如此,該類型染料的研發至今仍無法有效增加分子在近紅外光的吸收能力。本研究為求突破此限制,設計合成兩個新的雙吡啶配位釕錯合物(CYC-53及CYC-55),其分子設計不僅採用芳香雜環同時延長輔助配位基與固著配位基的共軛長度,在固著配位基更首次分別引入selenophene及thienothiophene單元。與固著配位基使用thiophene共軛單元的CYC-21相比,CYC-53及CYC-55在DMF溶液中的吸收光譜皆紅位移、吸收強度也增加 (CYC-53及CYC-55的起始吸收波長比CYC-21 (747 nm)分別紅位移了19 nm及14 nm)。而從電化學氧化峰得知三者的HOMO位能皆為+0.84 V (vs. NHE),透過搭配吸收光譜所得之能隙可得知:CYC-53的LUMO位能(-0.78 V vs. NHE)、CYC-55的LUMO位能(-0.79 V vs. NHE)皆低於CYC-21之LUMO位能(-0.82 V vs. NHE)。在所敏化元件的效率比較中,CYC-53及CYC-55的Jsc值均大於CYC-21 (11.61 mA·cm-2)所敏化之元件,且其中以CYC-55所敏化之元件具最高效率(6.85%),此結果顯示在釕錯合物染料分子的固著配位基引入重原子及延長共軛單元,能夠有效降低釕錯合物的能隙、拓寬吸光範圍、與提高吸收係數,以利進一步提高所敏化元件的光電轉換效率。
摘要(英) Dye-sensitized solar cells (DSCs) have attracted significant attention due to their unique working mechanism, diverse materials, low manufacturing costs, and good efficiency. Bipyridyl ruthenium (Ru)-based sensitizers have received considerable attention for attending high efficiency and stability of the corresponding DSCs. However, to date, their development has not effectively increased the near-infrared light absorption capacity. To breakthrough this limitation, two new bipyridyl Ru complexes (CYC-53 and CYC-55) are designed and synthesized. They have the heterocycles to simultaneously extend the conjugation length of both ancillary and anchoring ligands. Additionally, for the first time, selenophene and thienothiophene moieties are introduced in the anchoring ligands to extent their conjugate length. Compared with CYC-21 (747 nm) using thiophene in the anchoring ligand, CYC-53 and CYC-55 in DMF exhibit a red-shifted (by 19 nm and 14 nm, respectively), and increased absorption intensity. Moreover, all of the three complexes have the same HOMO energy level of +0.84 V (vs. NHE). LUMO energy levels for CYC-53 (-0.78 V vs. NHE) and CYC-55 (-0.79 V vs. NHE) are lower than that of CYC-21 (-0.82 V vs. NHE). Both of CYC-53 and CYC-55 dyed DSCs exhibit higher Jsc values than that based on CYC-21 (11.61 mA·cm-2). CYC-55-sensitized device achieves the highest efficiency of 6.85%. These results indicate that introducing heavy atoms and extending the conjugation length in the anchoring ligands of Ru complexes can effectively reduce the energy gap, broaden the absorption profile, and enhance the absorption coefficient, thereby improving the power conversion efficiency of the correspondry devices.
關鍵字(中) ★ 釕錯合物
★ 芳香雜環
關鍵字(英)
論文目次 摘要 I
Abstract II
謝誌 III
目錄 IV
圖目錄 VII
表目錄 XVI
附錄目錄 XVIII
第一章 緒論 1
1-1 前言 1
1-2 太陽光譜與太陽能電池的光伏參數 1
1-3 太陽能電池的發展歷史簡介 6
1-4 染料敏化太陽能電池的工作原理 8
1-5 釕錯合物分子設計 11
1-5-1 均配型(Homoleptic)釕錯合物染料 12
1-5-2 異配型(Heteroleptic)釕錯合物染料 14
1-6 釕錯合物染料設計相關文獻探討 30
1-6-1 含Selenophene單元之染料 30
1-6-2 含Thienothiophene之染料 36
1-7研究動機 39
第二章 實驗部分 41
2-1 實驗藥品 41
2-2 中間產物之結構與簡稱 45
2-3 最終產物之結構與簡稱 48
2-4 儀器分析與樣品製備 49
2-5 合成流程及實驗 54
2-5-1 雙牙輔助配位基Ligand-20之合成 54
2-5-2 雙牙固著配位基Ligand-53-ester之合成 58
2-5-3 雙牙固著配位基Ligand-55-ester之合成 64
2-5-4 釕錯合物CYC-53之合成 74
2-5-5 釕錯合物CYC-55之合成 79
2-6 元件組裝與光電轉換效率量測 83
2-6-1 DSCs元件組裝流程 83
2-6-2 DSCs光電轉換效率量測系統 86
第三章 結果與討論 88
3-1 合成相關探討 88
3-1-1 雙牙固著配位基Ligand-53-ester合成所遇到之問題與解決方法 88
3-1-2 雙牙固著配位基Ligand-55-ester合成所遇到之問題與解決方法 93
3-2 釕錯合物染料純化、結構鑑定與光物理性質探討 101
3-2-1 釕錯合物染料純化、結構鑑定相關討論 101
3-2-2 釕錯合物的光物理性質探討 116
3-3 釕錯合物染料的電化學性質與前置分子軌域位能 120
3-4 釕錯合物染料敏化電池元件的性能探討 124
第四章 結論 127
參考文獻 128
附錄 136
附錄1:雙牙固著配位基Ligand-55(Te)-ester之合成 172
附錄2:雙牙固著配位基Ligand-58-ester之合成 179
附錄3:雙牙固著配位基Ligand-55(Te)-ester合成所遇到之問題 190
附錄4:釕錯合物CYC-58合成所遇到之問題 196
參考文獻 [12] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Dye sensitised zinc oxide: aqueous electrolyte: Platinum photocell, Nature 1976, 261, 402–403.
[13] B. O’Regan and M. Grätzel, A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991, 353, 737–740.
[14] J. Wu, Z. Lan, J. Lin, M. Huang and Y. Huang, Counter electrodes in dye-sensitized solar cells, Chem. Soc. Rev. 2017, 46, 5975–6023.
[15] A. B. F. Martinson, T. W. Hamann, M. J. Pellin, and J. T. Hupp, New architectures for dye-sensitized solar cells, Chem. Eur. J. 2008, 14, 4458–4467.
[16] L. Giribabu, R. K. Kanaparthi and V. Velkannan, Molecular engineering of sensitizers for dye-sensitized solar cell application, Chem. Rec. 2012, 12, 306–328.
[17] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Muller, P. Liska, N. Vlachopoulos and M. Grätzel, Conversion of light to electricity by cis-X2Bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes, J. Am. Chem. Soc. 1993, 115, 6382−6390.
[18] M. K. Nazeeruddin, R. H. Baker, P. Liska and M. Grätzel, Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell, J. Phys. Chem. B 2003, 107, 8981−8987.
[19] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers, J. Am. Chem. Soc. 2005, 127, 16835−16847.
[20] James E. House, 2020, Ligand fields and molecular orbitals, Inorganic Chemistry (Third Edition), 687−715.
[21] S. Aghazada and M. K. Nazeeruddin, Ruthenium complexes as sensitizers in dye-sensitized solar cells, Inorganics 2018, 6, 52.
[22] Sadig Aghazada, Cyclometalated ruthenium complexes for dye sensitized solar cells, Ph.D Dissertation, École polytechnique fédérale de lausanne, 2018.
[23] P. Wang, S. M. Zakeeruddin, R. H. Baker, J. E. Moser and M. Grätzel, Molecular-scale interface engineering of TiO2 nanocrystals: improve the efficiency and stability of dye-sensitized solar cells, Adv. Mater. 2003, 15, 2101−2104.
[24] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi and M. Grätzel, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte, Nat. Mater. 2003, 2, 402−407;498.
[25] C. Y. Chen, S. J. Wu, C. G. Wu, J. G. Chen and K. C. Ho, A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells, Angew. Chem. Int. Ed. 2006, 45, 5822−5825.
[26] N. Hirata, J. J. Lagref, E. J. Palomares, J. R. Durrant, M. K. Nazeeruddin, M. Grätzel and D. D. Censo, Supramolecular control of charge-transfer dynamics on dye-sensitized nanocrystalline TiO2 films, Chem. Eur. J. 2004, 10, 595−602.
[27] C. Y. Chen, J. G. Chen, S. J. Wu, J. Y. Li, C. G. Wu and K. C. Ho, Multifunctionalized ruthenium-based supersensitizers for highly efficient dye-sensitized solar cells, Angew. Chem. Int. Ed. 2008, 47, 7342–7345.
[28] J. Y. Li, C. Y. Chen, J. G. Chen, C. J. Tan, K. M. Lee, S. J. Wu, Y. L. Tung, H. H. Tsai, K. C. Ho and C. G. Wu, Heteroleptic ruthenium antenna-dye for high-voltage dye-sensitized solar cells, J. Mater. Chem. 2010, 20, 7158–7164.
[29] C. Y. Chen, M. K. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin and M. Grätzel, Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells, ACS Nano 2009, 3, 3103–3109.
[30] C. Y. Chen, N. Pootrakulchote, T. H. Hung, C. J. Tan, H. H. Tsai, S. M. Zakeeruddin, C. G. Wu and M. Grätzel, Ruthenium sensitizer with thienothiophene-linked carbazole antennas in conjunction with liquid electrolytes for dye-sensitized solar cells, J. Phys. Chem. C 2011, 115, 20043–20050.
[31] C. Y. Chen, N. Pootrakulchote, S. J. Wu, M. K. Wang, J. Y. Li, J. H. Tsai, C. G. Wu, S. M. Zakeeruddin and M. Grätzel, New ruthenium sensitizer with carbazole antennas for efficient and stable thin-film dye-sensitized solar cells, J. Phys. Chem. C 2009, 113, 20752–20757.
[32] T. D. Nguyen, C. H. Lin, C. L. Mai and C. G. Wu, Function of tetrabutylammonium on high-efficiency ruthenium sensitizers for both outdoor and indoor DSC application, ACS Omega 2019, 4, 11414−11423.
[33] C. Klein, M. K. Nazeeruddin, P. Liska, D. D. Censo, N. Hirata, E. Palomares, J. R. Durrant and M. Grätzel, Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity, Inorg. Chem. 2005, 44, 178−180.
[34] A. Mishra, N. Pootrakulchote, M. K. R. Fischer, C. Klein, M. K. Nazeeruddin, S. M. Zakeeruddin, P. Bäuerle and M. Grätzel, Design and synthesis of a novel anchoring ligand for highly efficient thin film dye-sensitized solar cells, Chem. Commun. 2009, 7146–7148.
[35] A. Mishra, N. Pootrakulchote, M. K. Wang, S. J. Moon, S. M. Zakeeruddin, M. Grätzel and P. Bäuerle, A thiophene-based anchoring ligand and its heteroleptic Ru(II)-complex for efficient thin-film dye-sensitized solar cells, Adv. Funct. Mater. 2011, 21, 963–970.
[36] C. Y. Chen, N. Pootrakulchote, M. Y. Chen, T. Moehl, H. H. Tsai, S. M. Zakeeruddin, C. G. Wu and M. Grätzel, A new heteroleptic ruthenium sensitizer for transparent dye-sensitized solar cells, Adv. Energy Mater. 2012, 2, 1503–1509.
[37] S. R. Jang, J. H. Yum, C. Klein, K. J. Kim, P. Wagner, D. Officer, M. Grätzel and M. K. Nazeeruddin, High molar extinction coefficient ruthenium sensitizers for thin film dye-sensitized solar cells, J. Phys. Chem. C 2009, 113, 1998–2003.
[38] J. Y. Seo, M. Y. Jeong, Y. N. Seo, E. G. Lee, Y. R. Kim, P. Byoungchoo and B. H. Kim, Synthesis and characterization of novel heteroleptic Ru(II) bipyridine complexes for dye‑sensitized solar cell applications, Monatsh. Chem. 2019, 150, 1445−1452.
[39] J. H. Lee, J. H. Seo, Y. R. Choi, H. J. Oh, J. N. Huh, P. Byoungchoo, J. Tak and B. H. Kim, Synthesis and characterization of heteroleptic Ru(II) complexes based on 4,4′-bis((E)-styryl)-2,2′-bipyridine as ancillary ligand and application for dye-sensitized solar cells, Helv. Chim. Acta 2018, 101, e1800030.
[40] F. F. Gao, Y. Wang, D. Shi, J. Zhang, M. K. Wang, X. Y. Jing, B. H. Baker, P. Wang, S. M. Zakeeruddin and M. Grätzel, Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells, J. Am. Chem. Soc. 2008, 130, 10720−10728.
[41] F. F. Gao, Y. M. Cheng, Q. J. Yu, S. Liu, D. Shi, Y. H. Li and P. Wang, Conjugation of selenophene with bipyridine for a high molar extinction coefficient sensitizer in dye-sensitized solar cells, Inorg. Chem. 2009, 48, 2664−2669.
[42] T. D. Nguyen, Y. P. Lan and C. G. Wu, The function of chalcogenophene in the cyclomatelated ring of the cycloruthenated dyes applied in dye-sensitized solar cell, Inorg. Chem. 2021, 60, 11328−11337.
[43] F. F. Gao, Y. Wang, J. Zhang, D. Shi, M. K. Wang, R. H. Baker, P. Wang, S. M. Zakeeruddin and M. Grätzel, A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell, Chem. Commun. 2008, 2635–2637.
[44] J. J. Kim, H. B. Choi, C. W. Kim, M. S. Kang, H. S. Kang and J. J. Ko, Novel amphiphilic ruthenium sensitizer with hydrophobic thiophene or thieno(3,2-b)thiophene-substituted 2,2’-dipyridylamine ligands for effective nanocrystalline dye sensitized solar cells, Chem. Mater. 2009, 21, 5719–5726.
[45] M. Vollmer, Physics of the microwave oven, Phys. Educ. 2004, 39, 74−81.
[46] B. L. Hayes, Recent advances in microwave-assisted synthesis, Aldricchim. Aceta. 2004, 17, 65−76.
[47] Y. Jiang, C. Cabanetos, M. Allain, S. Jungsuttiwong and J. Roncali, Manipulation of the electronic and photovoltaic properties of materials based on small push-pull molecules by substitution of the arylamine donor block by aliphatic groups, Org. Electron. 2016, 37, 294–304.
[48] T. D. Nguyen, C. H. Lin and C. G. Wu, Effect of the CF3 substituents on the charge-transfer kinetics of high-efficiency cyclometalated ruthenium sensitizers, Inorg. Chem. 2017, 56, 252−260.
[49] H. Y. Yuan, W. H. Yin, J. L. Hu and Y. Li, 3-sulfonyloxyaryl(mesityl)iodonium triflates as 1,2-benzdiyne precursors with activation via ortho-deprotonative elimination strategy, Nat. Commun. 2023, 14, 1841.
[50] K. Kawabata, M. Takeguchi and H. Goto, Optical activity of heteroaromatic conjugated polymer films prepared by asymmetric electrochemical polymerization in cholesteric liquid crystals: structural function for chiral induction, Macromolecules 2013, 46, 2078−2091.
[51] 楊智翔,含共軛配位基之釕錯合物合成與其在染料敏化太陽能電池的應用,國立中央大學化學研究所碩士學位論文,2018。
指導教授 陳家原(Chia-Yuan Chen) 審核日期 2023-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明