博碩士論文 108223052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.238.235.248
姓名 曾柏勝(Po-Sheng Tseng)  查詢紙本館藏   畢業系所 化學學系
論文名稱 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用★ VOC前濃縮與預警系統之建構
★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用★ 臭氧前趨物連續監測與臭氧生成之光化學探討
★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析
★ 近地表臭氧前驅物分析之前濃縮技術改良★ 自動化噴霧捕捉分析系統之建立與研究
★ 大體積固相微萃取水中揮發性有機污染物★ 空氣中有機污染物自動分析技術之開發研究 壹﹑碳沸石多重床與中孔徑矽沸石之氣體吸附特性研究 貳﹑有機污染物垂直探空光化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 依據美國空氣清淨法 (Clean Air Act Amendments, CAAA) 之定義,任何導致癌症或其他對人體造成重大危害症狀之空氣污染物皆稱為有害空氣污染物 (Hazardous Air Pollutants, HAPs)。為了及時掌握HPAs排放來源而增設之空氣品質測站、光化學評估監測站 (Photochemical Assessment Monitoring Stations, PAMS) 使用氣相層析火焰離子偵測器 (GC/FID) 等,雖可針對各項空氣品質、逸散性氣體,進行長期連續監測,仍有大部分HAPs項目未能達到連續監測目的,PAMS僅可連續測得有機光化前驅物種,和少數HAPs物種,如1,3-丁二烯、苯、甲苯、乙苯和二甲苯等。相比之下,使用GC與質譜聯用 (GC/MS) 可以解決使用GC/FID 無法監測大部分重要HAPs物種的問題。
為了因應台灣高濕度環境並連續監測HAPs物種,本研究利用自製除水儀 (Dewaterer, DW) 及熱脫附儀 (Thermal Desorption, TD) 串連GC/MS/FID在A工業區周界進行連續監測HAPs濃度。本研究先針對自製除水及熱脫附儀進行驗證,參考光化測站分析品質驗收標準,在特定物種之基線分離程度及MDL部分,本研究之DW-TD皆符合驗收標準;在層析圖譜表現上,本研究之DW-TD約有88%物種之Tailing Factor表現優於商業型機台,由此可說明本研究之自製DW-TD有比擬甚至優於商業型機台之圖譜表現,且可成功用於PAMS及後續研究。
本研究監測物種除涵蓋A工業區現有PAMS之54種揮發性有機化合物,對應之標準方法為NIEA A505.12B外,也可監測自離線式採樣分析的標準方法NIEA A715.15B之87種HAPs,扣除重複物種,共103種物進行監測。利用分流技術於兩個不同類型毛細管柱,完成最大分析效益,可定性定量103種目標化合物,成功地將PAMS和HAPs結合到單一系統中。
以環檢所NIEA A715.16B離線式方法為基礎,與A工業區共同建立相關品保品管規範,包含檢量線、每日準確度 (回收率)、精密度及方法偵測極限等。103項目標物檢量線建立結果顯示,R2值為0.991 ~ 1.000其中8項小於0.990,精密度及準確度結果顯示,RSD%介於2.3 ~ 27.4%,回收率介於86% ~ 139%,方法偵測極限結果顯示,MDL介於0.02 ~ 1.00。各項品保品管項目皆符合與A工業區所訂定之規範。
本研究前期於A工業區內地點一進行Online DW-TD-GC/MS連續監測HAPs,並與鄰近之PAMS進行比測,證實本研究系統之數據可信度後,後期測站移站至距A工業區東方1公里之地點二,藉由管柱分流技術,成功並聯FID以Online DW-TD-GC/MS/FID進行連續監測,解決MS無法分析乙烷、乙烯及乙炔等輕碳之侷限性,將離線式NIEA 715.16B方法及PAMS,合併至單一線上分析系統上,同時執行兩方法,工業區可以更有效地管控HAPs之排放 、來源及健康風險評估。
摘要(英) According to the Clean Air Act Amendments (CAAA) in the United States, any air pollutants that cause cancer or medical symptoms are called Hazardous Air Pollutants (HAPs). To effectively assess and control emission sources of HAPs monitoring tools such as photochemical assessment monitoring stations (PAMS) using gas chromatography with flame ionization detection (GC/FID) can partially carry out long-term continuous monitoring of various air fugitive gases, but its capabilities still fall short to cover most key HAPs. PAMS can only measure ozone precursors and a selected few selected HAPs, such as 1,3-butadine benzene, toluene, ethybenzene and xylenes. In comparison, using GC coupled with mass spectrometry (GC/MS) can avoid the shortfalls of GC/FID and cover most of the key gaseous organic HAPs.
In response to the high humidity environment in Taiwan and the continuous monitoring of HAPs species, this study uses a self-assembled dewaterer (DW) instrument and thermal desorption device (TD) to couple with GC/MS/FID for continuously monitoring ambient HAPs in industrial zones. We first validated the self-assembled DW and TD device in accordance with the PAMS quality assurance (QA) criteria of method detection limits (MDL) and recoveries. In terms of the chromatographic performance, the peak tailing factors with our DW-TD are better than those resulted from the commercial counterpart for 88% of the target analytes. This finding indicates that the performance of the spectrum of the self-assembled DW-TD is comparable or even better than the commercial counterpart, and can be successfully used in PAMS and HAPs measurements.
In addition to the 54 hydrocarbons currently hourly monitorined by PAMS in Taiwan, the 87 HAPs lised in the off-line method of Taiwan EPA NIEA A505.12B can also be measured. After excluding the duplicate species, a total of 103 species can be monitored with hourly resolution. Using the column split technique to two separate capillary columns and dual detectors to maximize compound coverage, the DW-TD-GC/MS/FID system can both qualitatively and quantitatively measure 103 target compounds; thus, it has successfully combine both PAMS and HAPs instruments into one system.
By referring to the NIEA A715.16B method for QA specifications, including linearity (R2), daily accuracy (recovery), precision and MDL. The 103 target compounds showed linearity (R2) ranging from 0.991 ~ 1.000 for most HAPs, with 8 compounds less than 0.990. The precision and accuracy results showed that the RSD% was between 2.3 and 27.4%, and the recovery was between 86% and 139%, whereas the MDL is between 0.02 ~ 1.00. All quality assurance items are in compliance with the specifications set by the A industrial zone.
At the early stage of this research, field measurements by online DW-TD-GC/MS was carried out within an industrial complex (denoted as complex A) and validated by comparing with a PAMS establishment nearby The success of the validation motivated another field test at a location 1 km east of the industrial zone A, away from the hot zone of emissions. FID was then successfully connected in parallel with MS via the split technique to form the online DW-TD-GC/MS/FID system for the 103 target compounds, including the extremely volatile species of ethane, ethene and ethyne. As a result, both PAMS and HAPs which are targeted by the off-line NIEA 715 16B method, can now be combined into one one-line GC system. Emission control, source apportionment, and health risks of HAPs in industrial zones can now be more effectively assessed.
關鍵字(中) ★ 除水器
★ 前濃縮儀
★ 線上質譜連續監測
★ 有害空氣污染物
★ 揮發性有機化合物
關鍵字(英) ★ GC/MS/FID
★ Volatile Organic Compounds
★ Photochemical Assessment Monitoring Stations
★ Thermal Desorption
★ In-Situ Online GC/MS
★ Hazardous Air Pollutants
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 ix
表目錄 xv
第一章 前言 1
1-1 研究動機及目的 1
1-2 研究背景 3
1-3 揮發性有機化合物監測方法 8
1-4 目標監測物種 16
第二章 儀器原理與分析方法 19
2-1 除水器 (Dewaterer, DW) 20
2-2 熱脫附儀 (Thermal Desorption, TD) 28
2-3 儀器流路與功能介紹 33
2-3-1 系統流路介紹 33
2-3-2 自動控制軟體及人機介面介紹 44
2-3-3 保壓測試介紹 51
2-3-4 系統保護機制介紹 53
2-4 層析管柱介紹 56
2-5 火焰離子偵測器 (Flame ionization detector, FID) 60
2-6 質譜儀(Mass spectrometry, MS) 62
2-6-1 內標準品 (Internal Standard, ISTD) 65
2-7 周界環境連續監測分析方法 68
第三章 分析方法與條件建立 78
3-1 目標分析物定性 80
3-2 層析條件建立 91
3-3 檢量線建立 94
3-4 準確度及精密度分析結果 97
3-5 方法偵測極限 99
3-6 儀器運轉穩定性 104
第四章 研究結果與討論 110
4-1 DW-TD與商業型機台性能比對 112
4-2 實場測試-A廠區測站地點一 118
4-2-1 儀器架設位置 118
4-2-2 污染物濃度趨勢比對 121
4-3 實場測試-A廠區測站地點二 130
4-3-1 儀器架設位置 130
4-3-2 特殊事件 133
4-3-3 OnlineGC/MS/FID方法應用 137
4-4 實場監測數據有效率 143
第五章 結論與未來展望 144
參考文獻 146
參考文獻 [1] 固定污染源有害空氣污染物健康風險評估及防制技術講習會,工業技術研究院,2019。
[2] B. Lee (1991) Highlights of the clean air act amendments off 1990. Journal of the Air & Waste Management Association 41, 16-19.
[3] U.S. EPA, The original list of hazardous air pollutants as follows.
http://www.epa.gov/ttn/atw/188polls.html. [24 Feb. 2016]
[4] U.S. EPA, What is the definition of VOC as follows.
https://www.epa.gov/air-emissions-inventories/what-definition-voc.
[15 Mar. 2019]
[5] 揮發性有機物空氣污染管制及排放標準,行政院環保署環境檢驗所,2013。
[6] C.C. Chang, J.L. Wang, S.C.C. Lung, S.C. Liu, C.J. Shiu (2009) Source characterization of ozone precursors by complementary approaches of vehicular indicator and principal component analysis. Atmospheric Environment 43, 1771-1778.
[7] C.C. Chang, J.L. Wang, S.C.C. Lung, C.-Y. Chang, P.J. Lee, C. Chew, W.C. Liao, W.N. Chen, C.F. Ou-Yang (2014) Seasonal characteristics of biogenic and anthropogenic isoprene in tropical–subtropical urban environments. Atmospheric Environment 99, 298-308.
[8] S. Reimann, P. Calanca, P. Hofer (2000) The anthropogenic contribution to isoprene concentrations in a rural atmosphere. Atmospheric Environment 34, 109-115.
[9] 空氣汙染防制法,行政院環境保護署環境檢驗所,1975。
[10] 特殊性工業區緩衝地帶及空氣品質監測設施設置標準,行政院環境保護署,2014。
[11] 特殊性工業區緩衝地帶及空氣品質監測設施設置標準,附表一:開發特殊性工業區應監測之有機光化前驅物,行政院環境保護署,2014。
[12] 特殊性工業區緩衝地帶及空氣品質監測設施設置標準,附表二:開發特殊性工業區應監測之有害空氣汙染物,行政院環境保護署,2014。
[13] M. Jacobson, H.C. Hansson, K. Noone, R. Charlson (2000) Organic atmospheric aerosols: Review and state of the science. Reviews of Geophysics 38, 267-294.
[14] H. Zheng, S. Kong, Y. Yan, N. Chen, L. Yao, X. Liu, F. Wu, Y. Cheng, Z. Niu, S. Zheng (2020) Compositions, sources and health risks of ambient volatile organic compounds (VOCs) at a petrochemical industrial park along the Yangtze River. Science of The Total Environment 703, 135505.
[15] T. Ryerson, M. Trainer, J. Holloway, D. Parrish, L. Huey, D. Sueper, G. Frost, S. Donnelly, S. Schauffler, E. Atlas (2001) Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science 292, 719-723.
[16] H.S.G. C.D. Jain, L.K. Sahu, A. Jayaraman (2017) Volatile Organic Compounds (VOCs) in The Air, Their Importance and Measurements. Earth Science India 10, 1-15.
[17] U.S. EPA, Toxic Organics - 14 (TO-14): Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using Specially Prepared Canisters with Subsequent Analysis by Gas Chromatography, 1999.
[18] U.S. EPA, Toxic Organics - 15 (TO-15): Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), 1999.
[19] U.S. EPA, Toxic Organics - 17 (TO-17): Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling onto Sorbent Tubes, 1999.
[20] 空氣中揮發性化合物篩檢方法-開徑式傅立葉轉換紅外光光譜分析法 (NIEA A002.10C),行政院環境保護署環境檢驗所,2005。
[21] 空氣中有機光化前驅物檢測方法-氣相層析/火焰離子化偵測法 (NIEA A505.12B),行政院環境保護署環境檢驗所,2013。
[22] 空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜儀法 (NIEA A715.16B),行政院保護署環境檢驗所,2021。
[23] 空氣中有機光化前驅物檢測方法-氣相層析/火焰離子化偵測法 (NIEA A505.12B),行政院環境保護署環境檢驗所,2015。
[24] Y.C. Su, W.-T. Liu, W.C. Liao, S.W. Chiang, J.L. Wang (2011) Full-range analysis of ambient volatile organic compounds by a new trapping method and gas chromatography/mass spectrometry. Journal of Chromatography A 1218, 5733-5742.
[25] J.L. Wang, C.C. Chang, K.Z. Lee (2012) In-line sampling with gas chromatography–mass spectrometry to monitor ambient volatile organic compounds. Journal of Chromatography A 1248, 161-168.
[26] 李冠均,碩士論文,自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物,化學學系,國立中央大學,2020。
[27] R. Simo, J.O. Grimalt, J. Albaiges (1993) Field sampling and analysis of volatile reduced sulphur compounds in air, water and wet sediments by cryogenic trapping and gas chromatography. Journal of Chromatography A 655, 301-307.
[28] 郭勝儒,碩士論文,空氣中氯乙烯、1, 2-二氯乙烷 GC/MS在線監測方法,化學學系,國立中央大學,2017。
[29] A. Maceira, L. Vallecillos, F. Borrull, R.M. Marcé (2017) New approach to resolve the humidity problem in VOC determination in outdoor air samples using solid adsorbent tubes followed by TD-GC–MS. Science of the total environment 599, 1718-1727.
[30] 王美珠,碩士論文,針對工業排放之污染性有機氣態物質開發連續監測技術,化學學系,國立中央大學,2016。
[31] Q. Gong, K.L. Demerjian (1995) Hydrocarbon losses on a regenerated nation® dryer. Journal Of The Air & Waste Management Association 45, 490-493.
[32] 朱晨瑄,碩士論文,以線上熱脫附氣相層析質譜法監測空氣中有害空氣污染物,化學學系,國立中央大學,2020。
[33] N. Schmidbauer, M. Oehme (1986) Improvement of a cryogenic preconcentration unit for C2‐C6 hydrocarbons in ambient air at ppt levels. Journal of High Resolution Chromatography 9, 502-505.
[34] J.L. Wang, C.J. Chang, W.D. Chang, C. Chew, S.W. Chen (1999) Construction and evaluation of automated gas chromatography for the measurement of anthropogenic halocarbons in the atmosphere. Journal of Chromatography A 844, 259-269.
[35] J.L. Wang, S.W. Chen, C. Chew (1999) Automated gas chromatography with cryogenic/sorbent trap for the measurement of volatile organic compounds in the atmosphere. Journal of Chromatography A 863, 183-193.
[36] R.B. Wilson, B.D. Fitz, B.C. Mannion, T. Lai, R.K. Olund, J.C. Hoggard, R.E. Synovec (2012) High-speed cryo-focusing injection for gas chromatography: Reduction of injection band broadening with concentration enrichment. Talanta 97, 9-15.
[37] R. Fuoco, A. Ceccarini, M. Onor, L. Marrara (1999) Analysis of priority pollutants in environmental samples by on-line supercritical fluid chromatography cleanup–cryo-trap–gas chromatography–mass spectrometry. Journal of Chromatography A 846, 387-393.
[38] J.L. Wang, W.L. Chen, Y.H. Lin, C.-H. Tsai (2000) Cryogen free automated gas chromatography for the measurement of ambient volatile organic compounds. Journal of Chromatography A 896, 31-39.
[39] J.L. Wang, C.-H. Wu (2002) Construction and validation of a cryogen free gas chromatography–electron-capture detection system for the measurement of ambient halocarbons. Analytica Chimica Acta 461, 85-95.
[40] J.L. Wang, G.Z. Din, C.C. Chan (2004) Validation of a laboratory-constructed automated gas chromatograph for the measurement of ozone precursors through comparison with a commercial analogy. Journal of Chromatography A 1027, 11-18.
[41] D. Tanner, D. Helmig, J. Hueber, P. Goldan (2006) Gas chromatography system for the automated, unattended, and cryogen-free monitoring of C2 to C6 non-methane hydrocarbons in the remote troposphere. Journal of Chromatography A 1111, 76-88.
[42] A. Ribes, G. Carrera, E. Gallego, X. Roca, M.J. Berenguer, X. Guardino (2007) Development and validation of a method for air-quality and nuisance odors monitoring of volatile organic compounds using multi-sorbent adsorption and gas chromatography/mass spectrometry thermal desorption system. Journal of Chromatography A 1140, 44-55.
[43] C.F. Ou‐Yang, W.C. Liao, P.C. Wang, G.J. Fan, C.C. Hsiao, M.T. Chuang, C.C. Chang, N.H. Lin, J.L. Wang (2016) Construction of a cryogen‐free thermal desorption gas chromatographic system with off‐the‐shelf components for monitoring ambient volatile organic compounds. Journal of separation science 39, 1489-1499.
[44] T.M. Wu, G.R. Wu, H.M. Kao, J.L. Wang (2006) Using mesoporous silica MCM-41 for in-line enrichment of atmospheric volatile organic compounds. Journal of Chromatography A 1105, 168-175.
[45] Y.C. Su, H.M. Kao, J.L. Wang (2010) Mesoporous silicate MCM-48 as an enrichment medium for ambient volatile organic compound analysis. Journal of Chromatography A 1217, 5643-5651.
[46] C.H. Wang, C.C. Chang, J.L. Wang (2005) Peak tailoring concept in gas chromatographic analysis of volatile organic pollutants in the atmosphere. Journal of Chromatography A 1087, 150-157.
[47] C.H. Wang, C.C. Chang, J.L. Wang (2007) Devising an adjustable splitter for dual-column gas chromatography. Journal of Chromatography A 1163, 298-303.
[48] R.L. Grob, E.F. Barry (1977) Modern practice of gas chromatography.
[49] Harris, Daniel C , Quantitative chemical analysis, 2010.
[50] Douglas A. Skoog, Principles of Instrumental Analysis, 2017.
[51] 蘇源昌,碩士論文,內部標準在氣相層析質譜儀分析揮發性有機物效能探討,化學學系,國立中央大學,2006。
[52] C.C. Chang, S.J. Lo, J.G. Lo, J.L. Wang (2003) Analysis of methyl tert-butyl ether in the atmosphere and implications as an exclusive indicator of automobile exhaust. Atmospheric Environment 37, 4747-4755.
[53] C.C. Chang, C.F. OuYang, C.H. Wang, S.W. Chiang, J.L. Wang (2010) Validation of in-situ measurements of volatile organic compounds through flask sampling and gas chromatography/mass spectrometry analysis. Atmospheric Environment 44, 1301-1307.
[54] 行政院環境保護署,空氣品質監測網-光化測站儀器簡介。
https://airtw.epa.gov.tw/CHT/TaskMonitoring/Photochemical/PhotochemicalInstruments.aspx. [19 Jul. 2021]
[55] U.S. EPA, Chapter One of the SW-846 Compendium: Project Quality Assurance and Quality ControlU.S. EPA, Chapter One of the SW-846 Compendium: Project Quality Assurance and Quality Control.
https://www.epa.gov/hw-sw846/chapter-one-sw-846-compendium-project-quality-assurance-and-quality-control.
指導教授 王家麟(Jia-Lin Wang) 審核日期 2021-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明