博碩士論文 108223053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.147.43.219
姓名 郭沛恩(Pei-En Kuo)  查詢紙本館藏   畢業系所 化學學系
論文名稱 類沸石咪唑骨架材料封裝微生物之相關研究
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-23以後開放)
摘要(中) 微生物在生活中被廣泛應用,例如汙水處理使用各類微生物來分解有機廢物或是重金屬,利用厭氧菌來製造醇類,醫學上也有利用細菌進行治療的細菌癌症療法。但不可避免的在作用環境中總有不利於微生物生存的條件存在,像是水中可能含有抗菌劑、厭氧菌作用環境無法完全阻隔氧氣、病人體內的溶菌酶和抗生素等,都會減弱微生物的活性及存活能力。因此科學家便致力於研究有機或無機材料結合生物體的生物複合材料,來增強生物細胞對於環境壓力的適應性。
金屬有機骨架材料 (MOFs),可藉由調整金屬離子與有機配體,根據需求調整其孔洞性質、比表面積、化學穩定性等,具有相當的多樣性,因此近期常被應用於與生物系統結合之研究。
本研究藉由將類沸石咪唑骨架材料-8 (ZIF-8) 合成於大腸桿菌表面形成塗層 (E. coli⊂ZIF-8),並於培養環境中添加抗生素來檢驗文獻中曾提到ZIF-8薄膜可能存有縫隙,進而使抗生素經由縫隙接觸大腸桿菌對其造成傷害的 現象,並利用本實驗室於2015年發表於JACS利用類沸石咪唑骨架材料-90 (ZIF-90) 封裝酵素之技術,形成微米級ZIF-90封裝大腸桿菌 (E. coli@ZIF-90) 來解決縫隙造成之問題,使得經歷培養於含抗生素的環境後,移除材料的大腸桿菌依然可以回復生長。經由量測反應物和反應環境之zeta電位來嘗試解釋造成兩者差異之原因,並研究ZIF-90封裝之大腸桿菌對於生物免疫系統之誘發與否,對於未來應用於癌症治療之可行性以及希望能將此研究成果進一步應用於真核生物-酵母菌上,以期未來能在生物複合材料的種類拓展上有更大的突破。
摘要(英) Microorganisms are widely used in life. For example, decomposing organic waste in sewage, producing alcohol by anaerobic fermentation, besides, bacteria can also be used in cancer treatment called “bacteria cancer therapy”. However, there are always some factors which will threaten their survival. Antiseptics exist in water, oxygen exist in the media of anaerobic bacteria, lysozyme and antibiotics in patients. These conditions all make microorganisms deactivate. Therefore, scientists research on combining organic or inorganic materials with cells in order to enhance their adaptability toward environmental stress.
Metal organic frameworks (MOFs) have variable pore properties, specific surface area, chemical stability. Scientists can adjust these properties by changing the precursors to fit their purpose. Therefore, the development of biocomposites by combinig Metal-organic frameworks and living systems is rapidly emerging.
In this study, Escherichia coli (E. coli) cell was encapsulated into single crystal zeolitic imidazolate framework-90 (ZIF-90). Being totally encapsulated by ZIF-90, E. coli gains the ability to survive the treatment of antibiotics. E. coli can still regrowth after removing the material. On the other hand, E. coli coated with nano-size ZIF-8 particles was damaged by antibiotics due to the defects of the coating layer. We also noticed the zeta potential differences between different synthetic conditions impact on the crystalline morphology. By studying whether the encapsulated E. coli will trigger the immunoreaction or not, we saw the feasibility of applying it to cancer therapy and hope we can apply this technic in encapsulating eukaryote like yeast in the future.
關鍵字(中) ★ 類沸石咪唑骨架材料
★ 大腸桿菌
關鍵字(英) ★ zeolitic imidazolate framework
★ E. Coli
論文目次 中文摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 金屬有機骨架材料 1
1-1-1 金屬有機骨架材料 1
1-1-2 類沸石咪唑骨架材料 3
1-1-3 類沸石咪唑骨架材料-8/-90 5
1-2 微生物 6
1-2-1 微生物 6
1-2-2 大腸桿菌 (Escherichia coli, E. coli) 6
1-2-3 釀酒酵母 (Saccharomyces cerevisiae, S. cerevisiae) 7
1-2-4 質體 (Plasmid) 8
1-2-5 酵母菌綠色螢光蛋白殖株合集 (Yeast GFP Clone Collection) 9
1-2-6 細菌癌症療法 (Bacterial Cancer Therapy) 10
1-3 研究動機與目的 13
第二章 實驗 15
2-1 實驗藥品及材料 15
2-2 實驗儀器 17
2-2-1 場發掃描式電子顯微鏡 (Field-emission Scanning Electron Microscope, FE-SEM) 18
2-2-2 X射線粉末繞射儀 (Power X-ray Diffractometer, PXRD) 19
2-2-4 攜帶式分光光度計 (Ultrospec 10 cell Density Meter) 20
2-2-5 螢光顯微鏡 (Fluorescence Microscopy) 20
2-2-6 Zeta電位分析儀 (Zeta Potential Analyzer) 21
2-3 實驗使用之酵素 23
2-3-1 溶菌酶 (Lysozyme) 23
2-3-2 蛋白酶 (Protease) 23
2-4 實驗步驟 24
2-4-1 奈米級類沸石咪唑骨架材料-90合成步驟 24
2-4-2 大腸桿菌之培養步驟 24
2-4-3 具奈米級類沸石咪唑骨架材料-8塗層之大腸桿菌 (E. coli⊂ZIF-8) 之合成步驟 25
2-4-4 微米級類沸石咪唑骨架材料-90封裝之大腸桿菌 (E. coli@ZIF-90) 之合成步驟 26
2-4-5 奈米級類沸石咪唑骨架材料-90塗層之大腸桿菌 (E. coli⊂nano ZIF-90) 之合成步驟 26
2-4-6 奈米級類沸石咪唑骨架材料-90塗層之大腸桿菌再次結晶實驗之相關步驟 26
2-4-7 類沸石咪唑骨架材料-8/-90封裝大腸桿菌 (E. coli⊂ZIF-8/E. coli@ZIF-90) 抵禦抗生素之能力測試實驗步驟 27
2-4-8 綠色螢光蛋白酵母菌之培養步驟 27
2-4-9 嘗試合成微米級類沸石咪唑骨架材料-90封裝之酵母菌 (Yeast@ZIF-90) 之相關試驗 28
2-4-10 奈米級類沸石咪唑骨架材料-90塗層之酵母菌 (Yeast⊂nano ZIF-90) 之合成步驟 28
2-4-11 奈米級類沸石咪唑骨架材料-90塗層之酵母菌再次結晶實驗之相關步驟 29
2-4-12 大腸桿菌水溶液之zeta電位測定步驟 29
2-4-13 大腸桿菌LB溶液之zeta電位測定步驟 29
2-4-14 合成環境下之奈米級類沸石咪唑骨架材料-8塗層之大腸桿菌 (E. coli⊂ZIF-8) zeta電位測定步驟 29
2-4-15 合成環境下之微米級類沸石咪唑骨架材料-90封裝之大腸桿菌 (E. coli@ZIF-90) zeta電位測定步驟 30
2-4-16 再次結晶環境下之奈米級類沸石咪唑骨架材料-90塗層之大腸桿菌 (E. coli⊂nano ZIF-90) zeta電位測定步驟 30
2-4-17 單批微米級類沸石咪唑骨架材料-90封裝之大腸桿菌 (E. coli@ZIF-90)含有之活體E.coli數量測定 30
第三章 結果與討論 32
3-1 大腸桿菌生物複合材料之相關鑑定 32
3-1-1 X射線粉末繞射儀的鑑定結果 32
3-1-2 場發掃描式電子顯微鏡之成像結果 36
3-1-3 奈米級類沸石咪唑骨架材料-8塗層於大腸桿菌/微米級類沸石咪唑骨架材料-90封裝大腸桿菌 (E. coli⊂ZIF-8/E. coli@ZIF-90) 之抗生素耐受活性測試 37
3-1-4 合成環境Zeta電位的探討 38
3-1-5 Zeta電位對於結晶大小之影響測試 39
3-1-6類沸石咪唑骨架材料-8 /類沸石咪唑骨架材料-90對於體外免疫反應測試環境之穩定性 41
3-1-7 微米級類沸石咪唑骨架材料-90封裝大腸桿菌之免疫反應測試 43
3-2 酵母菌生物複合材料合成之相關數據 45
3-2-1 X射線粉末繞射儀的鑑定結果 45
3-2-2 酵母生物複合材料之影像數據 46
3-2-3 奈米級類沸石咪唑骨架材料-90塗層之酵母菌再次結晶試驗 48
第四章 結論 50
第五章 參考文獻 51
參考文獻 1. Hoskins, B. F.; Robson, R., Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American Chemical Society 1990, 112 (4), 1546-1554.
2. Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M. P.; Reedijk, J., Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). 2013, 85 (8), 1715.
3. Li, H.; Eddaoudi, M.; O′Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279.
4. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444.
5. Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Maloney, A. G. P.; Wood, P. A.; Ward, S. C.; Fairen-Jimenez, D., Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for Past, Present, and Future. Chemistry of Materials 2017, 29 (7), 2618-2625.
6. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W., Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 782-835.
7. Li, B.; Wen, H.-M.; Zhou, W.; Chen, B., Porous Metal–Organic Frameworks for Gas Storage and Separation: What, How, and Why? The Journal of Physical Chemistry Letters 2014, 5 (20), 3468-3479.
8. Zhao, Z.; Ma, X.; Kasik, A.; Li, Z.; Lin, Y. S., Gas Separation Properties of Metal Organic Framework (MOF-5) Membranes. Industrial & Engineering Chemistry Research 2013, 52 (3), 1102-1108.
9. Li, S.; Chen, Y.; Pei, X.; Zhang, S.; Feng, X.; Zhou, J.; Wang, B., Water Purification: Adsorption over Metal-Organic Frameworks. Chinese Journal of Chemistry 2016, 34 (2), 175-185.
10. Dhakshinamoorthy, A.; Li, Z.; Garcia, H., Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews 2018, 47 (22), 8134-8172.
11. Huang, Y.-B.; Liang, J.; Wang, X.-S.; Cao, R., Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews 2017, 46 (1), 126-157.
12. Yang, Q.; Xu, Q.; Jiang, H.-L., Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews 2017, 46 (15), 4774-4808.
13. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks in Biomedicine. Chemical Reviews 2012, 112 (2), 1232-1268.
14. Zhou, J.; Wang, B., Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chemical Society Reviews 2017, 46 (22), 6927-6945.
15. Li, S.-L.; Xu, Q., Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science 2013, 6 (6), 1656-1683.
16. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105-1125.
17. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933-969.
18. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M., Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64 (36), 8553-8557.
19. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
20. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.
21. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.
22. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214.
23. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications 2008, (31), 3642-3644.
24. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences 2006, 103 (27), 10186.
25. Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M., Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angewandte Chemie International Edition 2006, 45 (10), 1557-1559.
26. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO<sub>2</sub> Capture. Science 2008, 319 (5865), 939.
27. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130 (38), 12626-12627.
28. Sang, Y.; Cao, F.; Li, W.; Zhang, L.; You, Y.; Deng, Q.; Dong, K.; Ren, J.; Qu, X., Bioinspired Construction of a Nanozyme-Based H2O2 Homeostasis Disruptor for Intensive Chemodynamic Therapy. Journal of the American Chemical Society 2020, 142 (11), 5177-5183.
29. van Leewenhoeck, A., Observations, Communicated to the Publisher by Mr. Antony van Leewenhoeck, in a Dutch Letter of the 9th of Octob. 1676. Here English′d: concerning Little Animals by Him Observed in Rain-Well-Sea. and Snow Water; as Also in Water Wherein Pepper Had Lain Infused. Philosophical Transactions (1665-1678) 1677, 12, 821-831.
30. Escherich, T., Klinisch-therapeutische beobachtungen aus der cholera-epidemie in Neapel. Mun Med Wochenschrift 1884, 31, 561-4.
31. Sezonov, G.; Joseleau-Petit, D.; Ari, R., Escherichia coli Physiology in Luria-Bertani Broth. Journal of Bacteriology 2007, 189 (23), 8746.
32. Addgene Depositor Full Sequence Map for pET28:GFP.
33. Huh, W.-K.; Falvo, J. V.; Gerke, L. C.; Carroll, A. S.; Howson, R. W.; Weissman, J. S.; O′Shea, E. K., Global analysis of protein localization in budding yeast. Nature 2003, 425 (6959), 686-691.
34. McCarthy, E. F., The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 2006, 26, 154-158.
35. Dang, L. H.; Bettegowda, C.; Huso, D. L.; Kinzler, K. W.; Vogelstein, B., Combination bacteriolytic therapy for the treatment of experimental tumors. Proceedings of the National Academy of Sciences 2001, 98 (26), 15155.
36. Kasinskas, R. W.; Forbes, N. S., Salmonella typhimurium specifically chemotax and proliferate in heterogeneous tumor tissue in vitro. Biotechnology and Bioengineering 2006, 94 (4), 710-721.
37. Leschner, S.; Westphal, K.; Dietrich, N.; Viegas, N.; Jablonska, J.; Lyszkiewicz, M.; Lienenklaus, S.; Falk, W.; Gekara, N.; Loessner, H.; Weiss, S., Tumor Invasion of Salmonella enterica Serovar Typhimurium Is Accompanied by Strong Hemorrhage Promoted by TNF-α. PLOS ONE 2009, 4 (8), e6692.
38. Vaupel, P.; Kallinowski, F.; Okunieff, P., Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review. Cancer Research 1989, 49 (23), 6449.
39. Middlebrook, J. L.; Dorland, R. B., Bacterial toxins: cellular mechanisms of action. Microbiol Rev 1984, 48 (3), 199-221.
40. Lee, C. H.; Lin, S. T.; Liu, J. J.; Chang, W. W.; Hsieh, J. L.; Wang, W. K., Salmonella induce autophagy in melanoma by the downregulation of AKT/mTOR pathway. Gene Therapy 2014, 21 (3), 309-316.
41. Sznol, M.; Lin, S. L.; Bermudes, D.; Zheng, L. M.; King, I., Use of preferentially replicating bacteria for the treatment of cancer. J Clin Invest 2000, 105 (8), 1027-1030.
42. Phan, T. X.; Nguyen, V. H.; Duong, M. T.-Q.; Hong, Y.; Choy, H. E.; Min, J.-J., Activation of inflammasome by attenuated Salmonella typhimurium in bacteria-mediated cancer therapy. Microbiology and Immunology 2015, 59 (11), 664-675.
43. Sfondrini, L.; Rossini, A.; Besusso, D.; Merlo, A.; Tagliabue, E.; Mènard, S.; Balsari, A., Antitumor Activity of the TLR-5 Ligand Flagellin in Mouse Models of Cancer. The Journal of Immunology 2006, 176 (11), 6624.
44. Saccheri, F.; Pozzi, C.; Avogadri, F.; Barozzi, S.; Faretta, M.; Fusi, P.; Rescigno, M., Bacteria-Induced Gap Junctions in Tumors Favor Antigen Cross-Presentation and Antitumor Immunity. Science Translational Medicine 2010, 2 (44), 44ra57.
45. Flentie, K.; Kocher, B.; Gammon, S. T.; Novack, D. V.; McKinney, J. S.; Piwnica-Worms, D., A Bioluminescent Transposon Reporter-Trap Identifies Tumor-Specific Microenvironment-Induced Promoters in <em>Salmonella</em> for Conditional Bacterial-Based Tumor Therapy. Cancer Discovery 2012, 2 (7), 624.
46. Jiang, S.-N.; Park, S.-H.; Lee, H. J.; Zheng, J. H.; Kim, H.-S.; Bom, H.-S.; Hong, Y.; Szardenings, M.; Shin, M. G.; Kim, S.-C.; Ntziachristos, V.; Choy, H. E.; Min, J.-J., Engineering of Bacteria for the Visualization of Targeted Delivery of a Cytolytic Anticancer Agent. Molecular Therapy 2013, 21 (11), 1985-1995.
47. Guan, G.-f.; Zhao, M.; Liu, L.-m.; Jin, C.-s.; Sun, K.; Zhang, D.-j.; Yu, D.-j.; Cao, H.-w.; Lu, Y. q.; Wen, L.-j., Salmonella typhimurium Mediated Delivery of Apoptin in Human Laryngeal Cancer. International Journal of Medical Sciences 2013, 10 (12), 1639-1648.
48. Critchley-Thorne, R. J.; Stagg, A. J.; Vassaux, G., Recombinant Escherichia coli Expressing Invasin Targets the Peyer′s Patches: the Basis for a Bacterial Formulation for Oral Vaccination. Molecular Therapy 2006, 14 (2), 183-191.
49. Cunningham, C.; Nemunaitis, J., A phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL-017. Version: April 9, 2001. Human gene therapy 2001, 12 12, 1594-6.
50. Ghoneum, M.; Wang, L.; Agrawal, S.; Gollapudi, S., Yeast Therapy for the Treatment of Breast Cancer: A Nude Mice Model Study. In Vivo 2007, 21 (2), 251.
51. Liu, S.; Xu, X.; Zeng, X.; Li, L.; Chen, Q.; Li, J., Tumor‑targeting bacterial therapy: A potential treatment for oral cancer (Review). Oncol Lett 2014, 8 (6), 2359-2366.
52. Kudryavtsev, A.; Guelpa, V.; Rougeot, P.; Lehmann, O.; Dembélé, S.; Sturm, P.; Piat, N., Autocalibration method for scanning electron microscope using affine camera model. Machine Vision and Applications 2020, 31.
53. Liang, K.; Richardson, J. J.; Cui, J.; Caruso, F.; Doonan, C. J.; Falcaro, P., Metal–Organic Framework Coatings as Cytoprotective Exoskeletons for Living Cells. Advanced Materials 2016, 28 (36), 7910-7914.
54. Vinothini, K.; Rajan, M., Chapter 9 - Mechanism for the Nano-Based Drug Delivery System. In Characterization and Biology of Nanomaterials for Drug Delivery, Mohapatra, S. S.; Ranjan, S.; Dasgupta, N.; Mishra, R. K.; Thomas, S., Eds. Elsevier: 2019; pp 219-263.
55. Handbook of Detection of Enzymes on Electrophoretic Gels, Second Edition By Gennady P. Manchenko (Institute of Marine Biology, Russian Academy of Science). CRC Press LLC:  Boca Raton. 2003. . Journal of the American Chemical Society 2003, 125 (33), 10145-10145.
56. Lo, W.-S.; Liu, S.-M.; Wang, S.-C.; Lin, H.-P.; Ma, N.; Huang, H.-Y.; Shieh, F.-K., A green and facile approach to obtain 100 nm zeolitic imidazolate framework-90 (ZIF-90) particles via leveraging viscosity effects. RSC Advances 2014, 4 (95), 52883-52886.
57. Zabel, U.; Schreck, R.; Baeuerle, P. A., DNA binding of purified transcription factor NF-kappa B. Affinity, specificity, Zn2+ dependence, and differential half-site recognition. Journal of Biological Chemistry 1991, 266 (1), 252-260.
58. Billack, B., Macrophage activation: role of toll-like receptors, nitric oxide, and nuclear factor kappa B. Am J Pharm Educ 2006, 70 (5), 102-102.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2021-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明