博碩士論文 108223062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.134.87.95
姓名 謝欣翰(Hsin-Han Hsieh)  查詢紙本館藏   畢業系所 化學學系
論文名稱 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應
((Thiolan-2-yl)diphenylmethanol Benzyl Ether-Catalyzed Asymmetric [4+1] Cyclization and Its Application for Synthesis of Indoline derivativeDesign and Synthesis of Chiral Covalent Organic Frameworks and Its Application for Asymmetric Polyene Cyclization)
相關論文
★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在不對稱環化反應中硫偶極體常被當作碳原子的合成子,藉由硫偶極
體的親核基加成到具有親電性的起始物上進行環氧化合物、氮丙啶化合物
以及環丙烷化合物的合成。論文中使用實驗室所發表以及開發的掌性硫化
物,將此掌性硫化物應用在過渡金屬的不對稱 [4+1] 環化反應中,希望能
開發出更多的應用性。
在大自然中許多具有生物活性的萜類化合物都是經由酵素對異戊二烯
類的化合物進行環化反應。而此多烯環化的反應一直被認為是合成具有生
物活性的萜類化合物和其他天然物的重要反應,藉由多烯環化的反應能夠
有效的將分子中的碳進行鍵結同時控制其立體結構。受到 William R.
Dichtel’s 的研究所啟發,我們使用 1,1′-聯-2-萘酚為基底的單體與三烯化合
物作為架橋分子,利用環合置換反應將兩種化合物進行鍵結合成出掌性共
價有機框架材料,將其應用在多烯環化反應中並且探討異相催化劑在多烯
環化的應用及發展性。
摘要(英) Sulfur ylides have long been used as one-carbon synthons in many kinds of
transformations, such as synthesis of epoxides, aziridines, and cyclopropanes
through ylide addition to the electron-poor π system. Our lab has previously
reported the enantioselective synthesis of (S)-thionyl diphenylmethanol and the
application of its benzyl ether derivative in asymmetric synthesis, catalytic CoreyChaykovsky reaction of benzyl bromide, and aldehydes to give trans-epoxides in
high yield with good to high enantiomeric excess. The ability of sulfur-based
ylides to efficiently participate in transition metal-catalyzed [4+1] cycloaddition
was found recently. Further extension of the application of this chiral sulfide to
participate in transition metal-catalyzed [n+1] cycloaddition is explored by using
our catalyst (THTOBn) or its sulfonium salt in this thesis.
A variety of terpenoids are enzymatically synthesized by cyclization of
polyprenoids such as squalene, farnesol, geranylgeraniol in the biological system.
Polyene cyclization is recognized as a unique and efficient way to build structural
complexity from acyclic molecules via concerted and stereo-controlled C–C bond
formations. In this work, we use a new type of porous material, chiral covalent
organic frameworks (CCOFs) as a chiral source and catalyst to conduct polyene
cyclization. Inspired by William R. Dichtel’s work, we plan to adopt ring-closing
metathesis strategy for the construction of CCOFs from 1,1′-Bi-2-naphthol
(BINOL) type monomers and triene linkers.
關鍵字(中) ★ 硫偶極體
★ 掌性
★ 環化反應
★ 多烯環化
★ 共價有機框架材料
關鍵字(英) ★ Sulfur ylide
★ Chiral
★ Cycloaddition
★ Polyene cyclization
★ Covalent organic frameworks
論文目次 中文摘要.....................................................................................................................................i
Abstract.......................................................................................................................................ii
謝誌...........................................................................................................................................iii
總目錄.......................................................................................................................................iv
圖目錄......................................................................................................................................vii
式目錄.......................................................................................................................................ix
表目錄........................................................................................................................................x
縮寫說明..................................................................................................................................xii
第一章 掌性硫化合物進行不對稱 [4+1] 環化反應......................................................1
第一節 緒論.......................................................................................................................1
1-1 硫偶極體的發現與應用................................................................................................1
1-2 硫偶極體的 [2+1] 不對稱環化反應...........................................................................4
1-2-1 硫偶極體的不對稱環氧化反應...........................................................................4
1-2-2 硫偶極體的不對稱氮丙啶化反應.......................................................................7
1-2-3 硫偶極體不對稱環丙烷化反應.........................................................................10
1-3 硫偶極體的不對稱 [n+1] 環化反應.........................................................................12
1-4 研究動機......................................................................................................................21
第二節 結果與討論................................................................................................................23
2-1 手性硫化物的製備與合成路徑..................................................................................23
2-2 乙烯基氨基甲酸酯 (vinyl carbamates) 的合成........................................................25
v
2-3 不對稱 [4+1] 環化反應.............................................................................................26
2-3-1 不對稱 [4+1] 環化反應的溫度篩選................................................................26
2-3-2 不對稱 [4+1] 環化反應的金屬催化劑量的篩選............................................28
2-3-3 不對稱 [4+1] 環化反應的溶劑篩選................................................................29
2-3-4 不對稱 [4+1] 環化反應的鹼篩選....................................................................31
2-3-5 不對稱 [4+1] 環化反應的優化........................................................................33
2-3-6 不對稱 [4+1] 環化反應機構探討....................................................................35
2-4 不對稱 [4+1] 環化反應的催化量嘗試.....................................................................37
2-4-1 不對稱 [4+1] 環化反應的催化量策略............................................................37
2-4-2 不對稱 [4+1] 環化反應的催化量嘗試............................................................38
2-4-3 不對稱 [4+1] 環化反應的催化量催化循環式意圖........................................44
第三節 結論............................................................................................................................45
第二章 掌性共價有機框架材料的設計與合成並應用在多烯環化反應............................46
第一節 緒論.......................................................................................................................46
1-1 掌性共價有機框架材料 (CCOFs) 的發展背景.......................................................46
1-2 掌性共價有機框架材料 (CCOFs) 的建構方法.......................................................47
1-3 掌性共價有機框架材料 (CCOFs) 的合成介紹.......................................................51
1-4 掌性共價有機框架材料 (CCOFs) 的催化反應應用...............................................54
1-5 研究動機......................................................................................................................59
第二節 結果與討論................................................................................................................62
2-1 單體與架橋分子設計與合成......................................................................................62
2-2 掌性共價有機框架材料的合成與應用......................................................................69
vi
2-3 掌性共價有機框架材料合成條件與多烯環化條件的篩選......................................76
2-4 掌性共價有機框架材料的多烯環化反應示意圖......................................................78
第三節 結論............................................................................................................................80
第三章 實驗部分....................................................................................................................81
3-1 General information ......................................................................................................81
3-2 Procedure and spectroscopic data .................................................................................82
第四章 參考文獻..................................................................................................................109
附錄........................................................................................................................................121
參考文獻 1. Johnson, A. W.; LaCount, R. B. The Chemistry of Ylides. VI.
Dimethylsulfonium Fluorenylide—A Synthesis of Epoxides1. J. Am. Chem.
Soc. 1961, 83 (2), 417-423.
2. Corey, E.; Chaykovsky, M. Dimethylsulfoxonium methylide. J. Am. Chem. Soc.
1962, 84 (5), 867-868.
3. Franzen, V.; H-E. Driesen. Umsetzung von Sulfonium‐Yliden mit polaren
Doppelbindungen. Chem. Ber, 1963. 96 (7), 1881-1890.
4. Corey, E.; Chaykovsky, M. Dimethyloxosulfonium methylide ((CH3)2SOCH2)
and dimethylsulfonium methylide ((CH3)2SCH2). Formation and application to
organic synthesis. J. Am. Chem. Soc. 1965. 87 (6), 1353-1364
5. Li, A.-H.; Dai, L.-X.; Hou, X.-L. Facile preparation of vinylaziridines by the
reaction of N-sulfonylimines and cinnamyl bromide mediated by a catalytic
amount of dimethyl sulfide. J. Am. Chem. Soc, 1996 (9), 867-869.
6. Saito, T.; Sakairi, M.; Akiba, D. Enantioselective synthesis of aziridines from
imines and alkyl halides using a camphor-derived chiral sulfide mediator via
the imino Corey–Chaykovsky reaction. Tetrahedron Lett., 2001. 42 (32), 5451-
5454.
7. Furukawa, N.; Sugihara, Y.; Fujihara, H. Camphoryl sulfide as a chiral auxiliary
and a mediator for one-step synthesis of optically active 1, 2-diaryloxiranes. J.
Org. Chem., 1989. 54 (17), 4222-4224.
8. Li, A.-H.; Dai, LX.; Hou, XL.; Huang, YZ.; Li, FW. Preparation of
Enantiomerically Enriched (2 R, 3 R)-or (2 S, 3 S)-trans-2, 3-Diaryloxiranes
via Camphor-Derived Sulfonium Ylides. J. Org. Chem., 1996. 61 (2), 489-493.
110
9. Julienne, K., Karine J.; Patrick Metzner,; Henryon,V.; Greiner, A. A simple C 2
symmetrical sulfide for a one-pot asymmetric conversion of aldehydes into
oxiranes. J. Org. Chem., 1998. 63 (13): p. 4532-4534.
10. Zanardi, J.; Leriverend, C.; Aubert, D.; Julienne, K.; Metzner, P. A catalytic
cycle for the asymmetric synthesis of epoxides using sulfur ylides. J. Org.
Chem., 2001. 66 (16), 5620-5623.
11. Hayakawa, R.; Shimizu, M. Synthesis of chiral epoxides from aldehydes using
sulfur ylide derived from reduced product of bakers′ yeast reduction. Synlett,
1999. 1999 (08), 1328-1330.
12. Saito, T.; Akiba, D.; Sakairi, M.; Kanazawa, S. Preparation of a novel,
camphor-derived sulfide and its evaluation as a chiral auxiliary mediator in
asymmetric epoxidation via the Corey–Chaykovsky reaction. Tetrahedron
Lett, 2001. 42 (1), 57-59.
13. Winn, C.L.; Bellenie, B.R.; Goodman, J.M. A highly enantioselective one-pot
sulfur ylide epoxidation reaction. Tetrahedron Lett., 2002. 43 (31), 5427-5430
14. Miyake, Y.; Oyamada, A.; Nishibayashi, Y.; Uemura, S. Asymmetric synthesis
of epoxides from aromatic aldehydes and benzyl halides catalyzed by C2
symmetric optically active sulfides having a binaphthyl skeleton. Heteroat.
Chem., 2002. 13 (3), 270-275.
15. Ishizaki, M.; Hoshino, O. Synthesis of novel C2‐symmetrical chiral sulfides
and their utility in asymmetric epoxidation of aldehydes. Chirality, 2003. 15
(4), 300-305.
16. Mikael, J.; Södergren, Sophie K. Bertilsson.; Andersson, Pher G. Catalytic
ferrocenyl sulfides for the asymmetric transformation of aldehydes into
111
epoxides. Tetrahedron: Asymmetry, 2004. 15 (20), 3275-3280.
17. Davoust, M.; Brière, J.-F.; Jaffrès, P.-A.; Metzner, P. Design of sulfides with a
locked conformation as promoters of catalytic and asymmetric sulfonium
ylide epoxidation. J. Org. Chem, 2005. 70 (10), 4166-4169.
18. Aggarwal, V.K.; Abdel-Rahman, H.; Fan, L.; Jones, R.V.H.; Standen, M.C.H.
Novel catalytic cycle for the synthesis of epoxides from aldehydes and sulfur
ylides mediated by catalytic quantities of sulfides and Rh2(OAc)4. J. Am.
Chem. Soc., 1994. 116 (13), 5973-5974
19. Aggarwal, V.K.; Abdel-Rahman, H.; Fan, L.; Jones, R.V.H.; Standen, M.C.H.
A novel catalytic cycle for the synthesis-of epoxides using sulfur ylides:
Application to base sensitive aldehydes. Tetrahedron letters, 1995. 36 (10),
1731-1732.
20. Aggarwal, V.K.; Abdel-Rahman, H.; Fan, L.; Jones, R.V.H.; Standen, M.C.H.
A novel catalytic cycle for the synthesis of epoxides using sulfur ylides. Chem.
Eur. J, 1996. 2 (8), 1024-1030.
21. Aggarwal, V.K..; Alonso, E.; Bae, I.; Hynd.; Lydon, K.M.; Palmer, M.J.; Patel,
M.; Porcelloni, M.; Richardson, J.; Stenson, R.A.; Studley, J.R.; Vasse, J.L.;
Winn, C.L. A new protocol for the in situ generation of aromatic,
heteroaromatic, and unsaturated diazo compounds and its application in
catalytic and asymmetric epoxidation of carbonyl compounds. Extensive
studies to map out scope and limitations, and rationalization of diastereo-and
enantioselectivities. J. Am. Chem. Soc, 2003. 125 (36), 10926-10940.
22. Wang, C.; Tunge,J.A. Asymmetric cycloadditions of palladium-polarized azao-xylylenes. J. Am. Chem. Soc. 2008. 8118-8119.
112
23. Rayner, C.M. Synthesis of thiols, selenols, sulfides, selenides, sulfoxides,
selenoxides, sulfones and selenones. Contemp Org Synth, 1996. 3 (6), 499-
533.
24. Huang, M.-T.; Wu, H.-Y.; Chein, R.-J. Enantioselective synthesis of diaryl
aziridines using tetrahydrothiophene-based chiral sulfides as organocatalysts.
Commun. Chem, 2014. 50 (9), 1101-1103.
25. Deng, X.-M.; Cai, P.; Ye, S.; Sun, X.-L.; Liao, W.-W.; Li, K.; Tang, Y.; Wu,
Y.-D.; Dai, L.-X. Enantioselective synthesis of vinylcyclopropanes and
vinylepoxides mediated by camphor-derived sulfur ylides: rationale of
enantioselectivity, scope, and limitation. J. Am. Chem. Soc, 2006. 128 (30),
9730-9740.
26. Aggarwal, V.K.; Alonso, E.; Fang, G.; Ferrara, M.; Hynd, G.; Porcelloni, M.
Application of chiral sulfides to catalytic asymmetric aziridination and
cyclopropanation with in situ generation of the diazo compound. Angew.
Chem. Int. Ed, 2001.40 (8), 1433-1436.
27. Lu, L.-Q.; Li, F.; An, J.; Cheng, Y.; Chen, J.-R.; Xiao, W.-J. Hydrogen‐Bond‐
Mediated Asymmetric Cascade Reaction of Stable Sulfur Ylides with
Nitroolefins: Scope, Application and Mechanism. Chem. Eur. J, 2012. 18 (13),
4073-4079.
28. Lu, L.-Q.; Li F, An, J.; Zhang, J.-J.; An, X.-L.; Hua, Q.-L.; Xiao, W.-J.
Construction of fused heterocyclic architectures by formal [4+ 1] / [3+ 2]
cycloaddition cascade of sulfur ylides and nitroolefins. Angew. Chem. Int. Ed,
2009. 121 (50), 9706-9709.
29. Yang, Q.-Q.; Xiao, W.-J. Catalytic Asymmetric Synthesis of Chiral
113
Dihydrobenzofurans through a Formal [4+ 1] Annulation Reaction of Sulfur
Ylides and In Situ Generated ortho‐Quinone Methides. Eur. J. Org. Chem,
2017. 2017 (2), 233-236.
30. Chen, J.-R.; Dong, W.-R.; Candy, M.; Pan, F.-F.; Jörres, M.; Bolm, C.
Enantioselective synthesis of dihydropyrazoles by formal [4+ 1] cycloaddition
of in situ-derived azoalkenes and sulfur ylides. J. Am. Chem. Soc, 2012. 134
(16), 6924-6927.
31. Klimczyk, S.; Misale, A.; Huang, X.; Maulide, N. Dimeric TADDOL
phosphoramidites in asymmetric catalysis: domino deracemization and
cyclopropanation of sulfonium ylides. Angew. Chem. Int. Ed, 2015. 54 (35),
10365-10369.
32. Weaver, J.D.; Recio, A. Ⅲ; Grenning, A.J.; Tunge, J.A. Transition metalcatalyzed decarboxylative allylation and benzylation reactions. Chem. Rev,
2011. 111 (3), 1846-1913.
33. Li, T.-R.; Tan, F. Lu, L.-Q.; Wei, Y.; Wang, Y.-N.; Liu, Y.-Y.; Yang, Q.-Q.;
Chen, J.-.; Shi, D.-Q.; Xiao, W.-J. Asymmetric trapping of zwitterionic
intermediates by sulphur ylides in a palladium-catalysed decarboxylationcycloaddition sequence. Nat. Commun, 2014. 5 (1), 1-10.
34. Guo, C.; Janssen-Müller, D.; Fleige, M.; Lerchen, A.; Daniliuc, C.G.; Glorius,
F. Mechanistic studies on a cooperative NHC organocatalysis/palladium
catalysis system: uncovering significant lessons for mixed chiral Pd
(NHC)(PR3) catalyst design. J. Am. Chem. Soc, 2017. 139 (12), 4443-4451.
35. Wang, Q.; Li, T.-R.; Lu, L.-Q.; Li, M.-M.; Zhang, K.; Xiao, W.-J. Catalytic
asymmetric [4+ 1] annulation of sulfur ylides with copper–allenylidene
114
intermediates. J. Am. Chem. Soc, 2016. 138 (27), 8360-8363.
36. Dairo, T.O.; Woo, L.K. Scope and Mechanism of Iridium Porphyrin-Catalyzed
S–H Insertion Reactions between Thiols and Diazo Esters. Organometallics,
2017. 36 (4), 927-934.
37. Tian, H.; Zhang, Pengxiang.; Peng, F.; Yang, H.; Fu H. Chiral cyclic ligandenabled iridium-catalyzed asymmetric arylation of unactivated racemic allylic
alcohols with anilines. Org. Lett, 2017. 19 (14), 3775-3778.
38. Qi, Z.; Kong, L.; Li, X. Rhodium (III)-catalyzed regio-and stereoselective C–
H allylation of arenes with vinyl benzoxazinanones. Org. Lett, 2016. 18 (17),
4392-4395.
39. Côté, A.P..; Benin, A. I.; Ockwig, N.W.; Michael Ò.; Matzger, A.J.; Yaghi, O.
M. Porous, crystalline, covalent organic frameworks. Science, 2005. 310
(5751), 1166-1170.
40. El-Kaderi, H.M.; Hunt, J.R.; Mendoza-Cortés, J.L.; Côté, A.P.; Taylor, R.E.;
O′Keeffe, M.; Yaghi, O.M. Designed synthesis of 3D covalent organic
frameworks. Science, 2007. 316 (5822), 268-272.
41. Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. A belt‐shaped, blue luminescent,
and semiconducting covalent organic framework. Angew. Chem. Int. Ed, 2008.
47 (46), 8826-8830.
42. Spitler, E.L.; Koo, B.T. Novotney, J.L.; Colson, J.W.; Uribe-Romo, F.J.;
Gutierrez, G.D.; Clancy, P.; Dichtel W.R. A 2D covalent organic framework
with 4.7-nm pores and insight into its interlayer stacking. J. Am. Chem. Soc,
2011. 133 (48), 19416-19421.
43. Zhou, T.-Y.; Xu, S.-Q.; Wen, Q.; Pang, Z.-F.; Zhao, X. One-step construction
115
of two different kinds of pores in a 2D covalent organic framework. J. Am.
Chem. Soc, 2014. 136 (45), 15885-15888.
44. Lin, G.; Ding, H.; Chen, R.; Peng, Z.; Wang, B.; Wang C. 3D porphyrin-based
covalent organic frameworks. J. Am. Chem. Soc, 2017. 139 (25), 8705-8709.
45. Uribe-Romo, F.J.; Hunt, J.R.; Furukawa, H.; Klöck, C.; ÒKeeffe, M.; Yaghi,
O.M. A crystalline imine-linked 3-D porous covalent organic framework. J.
Am. Chem. Soc, 2009. 131 (13), 4570-4571.
46. Ma,Y.-X.; Li, Z.-J., Wei, L.; Ding, S.-Y.; Zhang, Y.-B. Wang, W. A dynamic
three-dimensional covalent organic framework. J. Am. Chem. Soc, 2017. 139
(14), 4995-4998.
47. Ascherl, L.; Sick, T.; Margraf, J. T.; Lapidus, S.H.; Calik, M.; Hettstedt, C.;
Karaghiosoff, K.; Döblinger, M.; Clark, T.; Chapman, K.W.; Auras, F.; Bein
T. Molecular docking sites designed for the generation of highly crystalline
covalent organic frameworks. Nat. Chem, 2016. 8 (4), 310-316.
48. Zhu, Y.; Wan, S.; Jin, Y.; Zhang. W. Desymmetrized vertex design for the
synthesis of covalent organic frameworks with periodically heterogeneous
pore structures. J. Am. Chem. Soc, 2015. 137 (43), 13772-13775.
49. Li, Z.; Feng, X.; Zou, Y.; Zhang, Y.; Xia, H.; Liu, X.; Mu, Y. A 2D azine-linked
covalent organic framework for gas storage applications. ChemComm, 2014.
50 (89), 13825-13828.
50. Li, Z.; Zhi, Y.; Feng, X.; Ding, X.; Zou, Y.; Liu, X.; Mu, Y. An azine‐linked
covalent organic framework: synthesis, characterization and efficient gas
storage. Chem. Eur. J, 2015. 21 (34), 12079-12084.
51. Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R.B.; Zheng, J.; Wang, J.; Qiu S.; Yan
116
Y. Designed synthesis of large-pore crystalline polyimide covalent organic
frameworks. Nat. Commun, 2014. 5 (1), 1-8.
52. Fang, Q.; Wang, J.; Gu, S.; Kaspar, R.B.; Zhuang, Z. Zheng, J.; Guo, H.; Qiu,
S.; Yan Y. 3D porous crystalline polyimide covalent organic frameworks for
drug delivery. J. Am. Chem. Soc, 2015. 137 (26), 8352-8355.
53. Jin, E.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M.A. Xu, H.;
Nakamura, T.; Heine, T.; Chen, Q.; Jiang, D. Two-dimensional sp2 carbon–
conjugated covalent organic frameworks. Science, 2017. 357 (6352), 673-676.
54. Jin, E.; Li,J.; Geng, K.;Jiang, Q.; Xu, H.; Xu, Q.;Jiang, D. Designed synthesis
of stable light-emitting two-dimensional sp 2 carbon-conjugated covalent
organic frameworks. Nat. Commun, 2018. 9 (1), 1-10
55. Xu, H.; Wang, G.; Biswal, B.P.;. Addicoat, M.; Sheng, S.P..W.; Zhuang, X.;
Brunner E.; Heine, T.; Berger, R.; Feng, X. A Nitrogen‐Rich 2D sp2‐Carbon‐
Linked Conjugated Polymer Framework as a High‐Performance Cathode for
Lithium‐Ion Batteries. Angew. Chem. Int. Ed, 2019. 131 (3), 859-863.
56. Xu, H.; Chen, X.; Gao, J.; Lin, J.; Addicoat, M.; Irleb, S.; Jiang, D. Catalytic
covalent organic frameworks via pore surface engineering. ChemComm, 2014.
50 (11), 1292-1294.
57. Xu, H.; Gao, J.; Jiang, D. Stable, crystalline, porous, covalent organic
frameworks as a platform for chiral organocatalysts. Nat. Chem, 2015. 7 (11),
905-912.
58. Zhang, S.; Zheng, Y.; An, H.; Aguila, B.; Yang, C.-X.; Dong, Y.; Xie, W.;
Cheng, Peng.; Zhang, Z.; Chen, Y.; Ma, S. Covalent organic frameworks with
chirality enriched by biomolecules for efficient chiral separation. Angew.
117
Chem. Int. Ed, 2018. 57 (51), 16754-16759.
59. Sun, Qi.; Fu, C.-W.; Aguila, B.; Perman, J.; Wang, S.; Huang, H.-Y.; Xiao, F.-
S.; Ma S. Pore environment control and enhanced performance of enzymes
infiltrated in covalent organic frameworks. J. Am. Chem. Soc, 2018. 140 (3),
984-992.
60. Yuan, C.; Wu, X.; Gao, R.; Han, X.; Liu, Y.; Long, Y.; Cui, Y. Nanochannels
of covalent organic frameworks for chiral selective transmembrane transport
of amino acids. J. Am. Chem. Soc, 2019. 141 (51), 20187-20197.
61. Han, X., et al., Chiral covalent organic frameworks with high chemical
stability for heterogeneous asymmetric catalysis. J. Am. Chem. Soc, 2017. 139
(25), 8693-8697.
62. Han, X.; Xia, Q.; Huang, J.; Liu, Y.; Tan, C.; Cui, Y. Construction of a
hydrazone-linked chiral covalent organic framework–silica composite as the
stationary phase for high performance liquid chromatography. J. Chromatogr.
A, 2017. 1519, 100-109.
63. Zhang, J.; Han, X. Wu, X.; Liu, Yan.; Cui. Y. Multivariate chiral covalent
organic frameworks with controlled crystallinity and stability for asymmetric
catalysis. J. Am. Chem. Soc, 2017. 139 (24), 8277-8285.
64. Wan, H.; Lv, M.; Liu, X.; Chen, G.; Zhang, N.; Cao, Y.; Wang, H.; Ma, R.;
Qiu G.Activating hematite nanoplates via partial reduction for electrocatalytic
oxygen reduction reaction. ACS Sustain. Chem. Eng, 2019. 7 (13), 11841-
11849.
65. Wang, X.; Han, X.; Zhang, J.; Wu, X.; Liu, Y.; Cui, Y. Homochiral 2D porous
covalent organic frameworks for heterogeneous asymmetric catalysis. J. Am.
118
Chem. Soc, 2016. 138 (38), 12332-12335.
66. Zhang, Y.; Duan, J.; Ma, D.; Li, P.; Li, S.; Li, H.; Zhou, J.; Ma, X.; Feng, X.;
Wang, B. Three‐dimensional anionic cyclodextrin‐based covalent organic
frameworks. Angew. Chem. Int. Ed, 2017. 56(51): p. 16313-16317.
67. Han, X.; Zhang, J.; Huang, J.; Wu, X.; Yuan, D.; Liu, Y.; Cui, Y. Chiral
induction in covalent organic frameworks. Nat. Commun, 2018. 9 (1), 1-10.
68. Ma, H.-C.; Kan, J.-L.; Chen, G.-J.; Chen, C.-X.; Dong Y.-B. Pd NPs-loaded
homochiral covalent organic framework for heterogeneous asymmetric
catalysis. Chem. Mater, 2017. 29 (15), 6518-6524.
69. Ishihara, K.; Nakamura, S.; Yamamoto, H. The first enantioselective
biomimetic cyclization of polyprenoids. J. Am. Chem. Soc, 1999. 121 (20),
4906-4907.
70. Nakamura, S.; Ishihara, K.; Yamamoto, H. Enantioselective biomimetic
cyclization of isoprenoids using lewis acid-assisted chiral brønsted acids:
abnormal claisen rearrangements and successive cyclizations. J. Am. Chem.
Soc, 2000. 122 (34), 8131-8140.
71. Kumazawa, K.; Ishihara, K.; Yamamoto, H. Tin (IV) chloride-chiral
pyrogallol derivatives as new Lewis acid-assisted chiral Brønsted acids for
enantioselective polyene cyclization. Org. Lett, 2004. 6 (15), 2551-2554.
72. Surendra, K.; Corey, E.J. Highly enantioselective proton-initiated
polycyclization of polyenes. J. Am. Chem. Soc, 2012. 134 (29), 11992-11994.
73. Sakakura A.; Sakuma, M.; Ishihara, K. Chiral Lewis base-assisted Brønsted
acid (LBBA)-catalyzed enantioselective cyclization of 2-geranylphenols. Org.
Lett, 2011. 13 (12), 3130-3133.
119
74. Zhao, Y.-J.; Chng, S.-S.; Loh, T.-P. Lewis acid-promoted intermolecular
acetal-initiated cationic polyene cyclizations. J. Am. Chem. Soc, 2007. 129 (3),
492-493.
75. Zhao, Y.-J.; Loh, T.-P. Bioinspired polyene cyclization promoted by
intermolecular chiral acetal-SnCl4 or chiral N-acetal-TiCl4: Investigation of
the mechanism and identification of the key intermediates. J. Am. Chem. Soc,
2008. 130 (30), 10024-10029.
76. Knowles, R.R.; Lin, S.; Jacobsen, E.N. Enantioselective thiourea-catalyzed
cationic polycyclizations. J. Am. Chem. Soc, 2010. 132 (14), 5030-5032.
77. Mullen, C.A.; Gagne, M.R. Regioselective oxidative cation-olefin cyclization
of polyenes: catalyst turnover via hydride abstraction. J. Am. Chem. Soc, 2007.
129 (39), 11880-11881.
78. Sethofer, S.G.; Mayer, T.; Toste, F.D. Gold (I)-catalyzed enantioselective poly
cyclization reactions. J. Am. Chem. Soc, 2010. 132 (24), 8276-8277.
79. Lin, S.-C.; Chein, R.-J. Total synthesis of the labdane diterpenes galanal A and
B from geraniol. J. Org. Chem, 2017. 82 (3), 1575-1583.
80. Gopalakrishnan, D.; Dichtel, W.R. Direct detection of RDX vapor using a
conjugated polymer network. J. Am. Chem. Soc, 2013. 135 (22), 8357-8362.
81. Valente, C.; Choi, E.; Belowich, M.E.; Doonan, C.J.; Li, Q.; Gasa, T.B.; Botros,
Y.Y.; Yaghi, O.M.; Stoddart, J.F. Metal–organic frameworks with designed
chiral recognition sites. ChemComm, 2010. 46 (27), 4911-4913.
82. Lee, S.J.; Hu, A.; Lin, W. The first chiral organometallic triangle for
asymmetric catalysis. J. Am. Chem. Soc, 2002. 124 (44), 12948-12949.
83. Accurso, A.A.; Delaney, M.; ÒBrien, J.; Kim, H.; Iovine, P.M.; Díaz, D.D.;
120
Finn, MG. Improved Metal‐Adhesive Polymers from Copper (I)‐Catalyzed
Azide–Alkyne Cycloaddition. Chem. Eur. J, 2014. 20 (34), 10710-10719.
84. Sellner, H.; Faber, C.; Rheiner, P.B.; Seebach, D. Immobilization of BINOL
by cross‐linking copolymerization of styryl derivatives with styrene, and
applications in enantioselective Ti and Al Lewis acid mediated additions of
Et2Zn and Me3SiCN to aldehydes and of diphenyl nitrone to enol ethers. Chem.
Eur. J, 2000. 6 (20), 3692-3705.
85. Shu, W.; Guan, C.; Guo, W.; Wang, C.; Shen, Y. Conjugated poly
(aryleneethynylenesiloles) and their application in detecting explosives. J.
Mater. Chem, 2012. 22 (7), 3075-3081.
86. Yang, Z.-Z.; Zhao, Y.; Zhang, H.; Yu, B.; Ma, Z.; Jia, G.; Liu, Z. Fluorinated
microporous organic polymers: design and applications in CO2 adsorption and
conversion. ChemComm, 2014. 50 (90), 13910-13913.
87. Liang, Z.; Chen, J.; Chen, X.; Zang, K.; Lv, J.; Zhao, H.; Zhang, G.; Xie, C.;
Zong, X. Porous organic polymer supported rhodium as a heterogeneous
catalyst for hydroformylation of alkynes to α,β-unsaturated aldehydes. Chem.
Commun, 2019. 55 (91), 13721-13724.
88. Poupon, J.C.; Marcoux, D.; Cloarec, J.-M.; Charette, A.B. Removal, Recovery,
and Recycling of Triarylphosphonium-Supported Tin Reagents for Various
Organic Transformations. Org. Lett, 2007. 9 (18), 3591-3594.
89. Su, D.; Menger, F.M. Tetrastyrylmethane. Tetrahedron Lett, 1997. 38 (9),
1485-1488.
指導教授 陳榮傑 謝發坤(Rong-Jie Chein Fa-Kuen Shieh) 審核日期 2021-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明