博碩士論文 108225024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.223.20.57
姓名 古立丞(Li-Chen Ku)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 逆高斯過程之完整貝氏衰變分析
(A Complete Bayesian Degradation Analysis under Inverse Gaussian Processes)
相關論文
★ 具Box-Cox轉換之逐步加速壽命實驗的指數推論模型★ 多元反應變數長期資料之多變量線性混合模型
★ 多重型 I 設限下串聯系統之可靠度分析與最佳化設計★ 應用累積暴露模式至單調過程之加速衰變模型
★ 串聯系統加速壽命試驗之最佳樣本數配置★ 破壞性加速衰變試驗之適合度檢定
★ 串聯系統加速壽命試驗之最佳妥協設計★ 加速破壞性衰變模型之貝氏適合度檢定
★ 加速破壞性衰變模型之最佳實驗配置★ 累積暴露模式之單調加速衰變試驗
★ 具ED過程之兩因子加速衰退試驗建模研究★ 加速不變原則之偏斜-t過程
★ 花蓮地區地震資料改變點之貝氏模型選擇★ 颱風降雨量之統計迴歸預測
★ 花蓮地區地震資料之長時期相關性及時間-空間模型之可行性★ 台灣地區地震資料之經驗貝氏分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 衰變分析包含兩個階段,首先對收集到的與產品失效時間相關之品質特徵值的衰變資 料建構統計模型,而由於不同產品間可能存在差異性,衍伸出具隨機效應的衰變模型。 其次根據選取的衰變模型推估衰變路徑首次達失效門檻值之時間,進而得失效時間分 布之統計推論。另一方面,當樣本數少時,工程師在製程或試驗中對產品特徵與失效 機制有深入的專業知識和經驗,因而融合先驗資訊與觀測資料的貝氏方法是很自然的 選擇。文獻上關於衰變試驗的貝氏可靠度推論,多止於衰變路徑之建模與分析,在資 料配適和模型選擇上鮮少有完備的貝氏論述;關於後續之失效時間的推論則多由衰變 模型模擬而得,遑論探討失效時間模型之適合度檢定等重要議題。本文針對具單調性 的衰變路徑資料,以具共軛先驗分布之逆高斯過程進行完整的貝氏可靠度分析。對衰 變資料模型,除貝氏選模外,亦以貝氏適合度檢定,確認衰變資料的適切模型;繼而 推得產品失效時間之貝氏預測分布及相關推論,同時再就貝氏適合度檢定驗證失效時 間模型之合理性,提供完整的貝氏分析。最後以四筆實際資料驗證貝氏方法的可行性 並與古典統計方法進行比較。
摘要(英) Degradation analysis consists of two parts. First, a statistical model is constructed for the observations of a quality characteristic related to the failure time of the products. Possible unit to unit variation reflected in the decay rate and/or variability of degradation paths leads to random effects in the degradation models. Secondly, the lifetime inference of the product is derived based on the first passage time to a failure threshold of the selected degradation model. On the other hand, in particular for small sample sizes, Bayesian analysis incorporated with valuable prior information collected from expert opinion or experience, is a useful approach. However, most Bayesian research focuses more on analyzing the degradation data than deriving the lifetime inference. This thesis aims on a complete Bayesian approach not only to formulate the degradation model but also to deduce the consequent lifetime inference by using the Bayesian predictive analysis. Conjugate structure and hierarchical modelling are considered based on the inverse Gaussian processes for monotonic data. Bayesian model selection criteria are used to select the best degradation model and Bayesian goodness of fit is employed for model checking of the lifetime distribution. Four different examples are analyzed via the proposed approach and compared to the classical method.
關鍵字(中) ★ 階層貝氏
★ 馬可夫鏈蒙地卡羅
★ 逆高斯過程
★ 後驗預測 p -值
★ 適合度檢定
★ DIC
★ 預測分布
關鍵字(英) ★ hierarchical Bayesian
★ MCMC
★ inverse Gaussian process
★ posterior predictive p-value
★ goodness of fit
★ DIC
★ predictive distribution
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 背景與研究動機................................. 1
1.2 文獻探討 .................................... 3
1.3 研究方法 .................................... 5
1.4 本文架構 .................................... 5
第二章 逆高斯過程之衰變模型 7
2.1 符號與模型................................... 7
2.2 貝氏架構 .................................... 11
2.2.1 固定效應模型M0 ........................... 11
2.2.2 隨機效應模型M1 ........................... 13
2.2.3 隨機效應模型M2 ........................... 15
2.2.4 隨機效應模型M3 ........................... 16
2.3 MCMC演算法與貝氏推論........................... 17
2.4 貝氏模型選擇.................................. 19
2.4.1 DIC法則................................ 19
2.4.2 貝氏因子................................ 20
第三章 壽命分布之貝氏推論與適合度檢定 22
3.1 壽命分布 .................................... 22
3.2 貝氏壽命推論.................................. 24
3.3 貝氏適合度檢定................................. 26
3.4 虛擬失效時間.................................. 28
第四章 統計模擬與實例分析 30
4.1 分析步驟 .................................... 30
4.2 統計模擬 .................................... 31
4.3 雷射資料 .................................... 31
4.4 裂紋增長資料.................................. 39
4.5 火車車輪資料.................................. 44
4.6 接觸電阻資料.................................. 49
第五章 結論與展望 56
參考文獻 57
附錄 62
A.1定理2.1之證明................................. 62
A.2定理2.2之證明................................. 64
參考文獻 [1] Akaike, H. (1974). A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19, 716–723.
[2] Almeida, C. P. (2011). Methods of numerical estimation for degradation models with nonnormal random effects, Unpublished Master Dissertation, Federal University of Minas Gerais, Department of Statistics.
[3] Andrieu, C., De Freitas, N., and Doucet, A. (1999). Sequential MCMC for Bayesian model selection, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. SPW-HOS ’99, 130–134.
[4] Bae, S. J. and Kvam, P. H. (2004). A nonlinear random-coefficients model for degradation testing, Technometrics, 46, 460–469.
[5] Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis (Second Edition), New York: Springer-Verlag.
[6] Berger, J. O., Ghosh, J. K., and Mukhopadhyay, N. (2003). Approximations and consistency of Bayes factors as model dimension grows, Journal of Statistical Planning and Inference, 112, 241–258.
[7] Carlin, B. P. and Louis, T. A. (2008). Bayesian Methods for Data Analysis, London: Chapman and Hall.
[8] Fan, T. H. and Chen, C, H. (2017). A Bayesian predictive analysis of step-stress accelerated tests in gamma degradation-based processes, Quality and Reliability Engineering International, 33, 1417–1424.
[9] Gelfand, A. E. and Dey, D. K. (1994). Bayesian model choice: asymptotics and ex- act calculations, Journal of the Royal Statistical Society: Series B (Methodological), 56, 501–514.
[10] Gelman, A. (2004). Parameterization and Bayesian modeling, Journal of the American Statistical Association, 99, 537–545.
[11] Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (1995). Bayesian Data Analysis, London: Chapman and Hall.
[12] Gelman, A., Meng, X. L., and Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies, Statistica Sinica, 6, 733–807.
[13] Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6, 721–741.
[14] Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97–109.
[15] He, D., Wang, Y., and Chang, G. (2018). Objective Bayesian analysis for the accelerated degradation model based on the inverse Gaussian process, Applied Mathematical Modelling, 61, 341–350.
[16] Jefferys, W. H. and Berger, J. O. (1991). Sharpening Ockham’s razor on a Bayesian strop, Bulletin of the Astronomical Society, 23, 1259.
[17] Johnson, V. E. (2004). A Bayesian χ2 test for goodness-of-fit, The Annals of Statistics, 32, 2361–2384.
[18] Kim, H. J. (2008). Moments of truncated Student-t distribution, Journal of the Korean Statistical Society, 37, 81–87.
[19] Kim, S. H. and Sung, S. I. (2020). Modeling and analysis of the catastrophic failure and degradation data, Microelectronics Reliability, 114, 113764.
[20] Lawless, J. and Crowder, M. (2004). Covariates and random effects in a gamma process model with application to degradation and failure, Lifetime Data Analysis, 10, 213–227.
[21] Li, Y., Sun, B., Wang, Z., Ren, Y., and Jiang, H. (2016). Compound Poisson process based reliability analysis method for performance degradation of GaAs space solar cells, 2016 IEEE Industrial Electronics and Applications Conference (IEACon), 133–137.
[22] Meeker, W. Q. and Escobar, L. A. (1998). Statistical Methods for Reliability Data, New York: John wiley and Sons.
[23] Meeker, W. Q., Escobar, L. A., and Lu, C. J. (1998). Accelerated degradation tests: modeling and analysis, Technometrics, 40, 89–99.
[24] Meng, X. L. (1994). Posterior predictive p-values, The Annals of Statistics, 22, 1142–1160.
[25] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines, The Journal of Chemical Physics, 21, 1087–1092.
[26] Miazhynskaia, T. and Dorffner, G. (2006). A comparison of Bayesian model selection based on MCMC with an application to GARCH-type models, Statistical Papers, 47, 525–549.
[27] Nelson, W. B. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data Analysis, New York: John Wiley and Sons.
[28] Park, C. and Padgett, W. J. (2006). Stochastic degradation models with several accelerating variables, IEEE Transactions on Reliability, 55, 379–390.
[29] Pauler, D. K., Wakefield, J. C., and Kass, R. E. (1999). Bayes factors and approximations for variance component models, Journal of the American Statistical Association, 94, 1242–1253.
[30] Peng, C. Y. (2015). Inverse Gaussian processes with random effects and explanatory variables for degradation data, Technometrics, 57, 100–111.
[31] Peng, C. Y. and Tseng, S. T. (2013). Statistical lifetime inference with skew-Wiener linear degradation models, IEEE Transactions on Reliability, 62, 338–350.
[32] Peng, W., Li, Y. F., Yang, Y. J., Huang, H. Z., and Zuo, M. J. (2014). Inverse Gaussian process models for degradation analysis: A Bayesian perspective, Reliability Engineering & System Safety, 130, 175–189.
[33] Peng, W., Li, Y. F., Yang, Y. J., Mi, J., and Huang, H. Z. (2017). Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates, IEEE Transactions on Reliability, 66, 84–96.
[34] Polidoro, M. J., Magalhães, F. J., and Turkman, M. A. A. (2014). Classical and Bayesian Goodness-of-fit Tests for the Exponential Model: A Comparative Study, Cham: Springer.
[35] Qin, H., Zhang, S., and Zhou, W. (2013). Inverse Gaussian process-based corrosion growth modeling and its application in the reliability analysis for energy pipelines, Frontiers of Structural and Civil Engineering, 7, 276–287.
[36] Rodríguez-Picón, L. A., Méndez-González, L. C., Romero-López, R., Pérez-Olguín, I. J., Rodríguez-Borbón, M. I., and Valles-Rosales, D. J. (2021). Reliability analysis based on a gamma-Gaussian deconvolution degradation modeling with measurement error, Applied Sciences, 11, 4133.
[37] Schwarz, G. (1978). Estimating the dimension of a model, The Annals of Statistics, 6, 461–464.
[38] Shiau, J. J. H. and Lin, H. H. (1999). Analyzing accelerated degradation data by nonparametric regression, IEEE Transactions on Reliability, 48, 149–158.
[39] Singpurwalla, N. D. (1995). Survival in dynamic environments, Statistical Science, 10, 86–103.
[40] Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002). Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64, 583–639.
[41] Tseng, S. T. and Peng, C. Y. (2007). Stochastic diffusion modeling of degradation data, Journal of Data Science, 5, 315–333.
[42] Vacar, C., Giovannelli, J. F., and Roman, A. M. (2012). Bayesian texture model selection by harmonic mean, 2012 19th IEEE International Conference on Image Processing, 2533–2536.
[43] Wang, H., Teng, K., and Zhou, Y. (2018). Design an optimal accelerated-stress reliability acceptance test plan based on acceleration factor, IEEE Transactions on Reliability, 67, 1008–1018.
[44] Wang, X. and Xu, D. (2010). An inverse Gaussian process model for degradation data, Technometrics, 52, 188–197.
[45] Ye, Z. S. and Chen, N. (2014). The inverse Gaussian process as a degradation model, Technometrics, 56, 302–311.
[46] Ye, Z. S., Wang, Y., Tsui, K. L., and Pecht, M. (2013). Degradation data analysis using Wiener processes with measurement errors, IEEE Transactions on Reliability, 62, 772–780.
[47] Ye, Z. S. and Xie, M. (2015). Stochastic modelling and analysis of degradation for highly reliable products, Applied Stochastic Models in Business and Industry, 31, 16–32.
[48] Yuan, R., Tang, M., Wang, H., and Li, H. (2019). A reliability analysis method of accelerated performance degradation based on Bayesian strategy, IEEE Access, 7, 169047–169054.
[49] Yuan, T. and Ji, Y. (2015). A hierarchical Bayesian degradation model for heterogeneous data, IEEE Transactions on Reliability, 64, 63–70.
[50] Yuan, Y. and Johnson, V. E. (2012). Goodness-of-fit diagnostics for Bayesian hierarchical models, Biometrics, 68, 156–164.
[51] Zhu, L. and Carlin, B. P. (2000). Comparing hierarchical models for spatio-temporally misaligned data using the deviance information criterion, Statistics in Medicine, 19, 2265–2278.
指導教授 樊采虹(Tsai-Hung Fan) 審核日期 2021-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明