博碩士論文 108226005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.138.122.195
姓名 賴澔霆(Hao-Ting Lai)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 高效率低深寬比幾何相位超穎介面
(High efficiency and low aspect ratio of geometric metasurface)
相關論文
★ 從「紅葉」到「黑鷹」:台灣棒球醜聞的文化再現★ 基於音頻訊號隱藏技術之聲波數位傳輸
★ 金屬鹵化鈣鈦礦塊材之光致發光及光致變色特性研究★ 奈米壓印技術製作全介電幾何相位超穎表面
★ 混合式超穎介面於感光元件之應用★ 以自製灰階曝光機製作各式微光學元件
★ 以雙面非等向性濕蝕刻製備單晶石英深穿孔★ 奈米壓印技術製作全介電光學繞射元件
★ 全介電幾何相位超穎表面的設計、優化及簡化模型★ 以超穎校正器提升三片式庫克鏡組光學品質之研究
★ 全介電幾何相位超穎表面的 抗反射設計★ 藉由散射強化輻射冷卻發電之研究
★ 以人工智慧模型修復超穎透鏡影像品質之研究★ 基於波導共振之手鏡超穎介面之研究
★ 像素級超穎介面色彩路由器之設計與製作★ 用於屏下螢幕顯示的相位共軛超穎表面設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 幾何相位超穎表面可以通過增加結構的深寬比來實現高效率。然而,高深寬比的結構不利於製造。在本論文中,我們提出了一種解決方案,通過在GaN和Nb2O5 Nano-fin結構中添加高折射率材料層(a-Si)來降低深寬比要求。我們數值研究了三層Nano-fin結構的光學特性和提高總偏振轉換率(OPCE)。與GaN Nanofin結構相比,三層Nano-fin結構(a-Si=30nm)的深寬比要求從6下降到4 (下降33%)。在Nb2O5的情況下,深寬比(a-Si=35nm)要求從6下降到4(下降33%)。由於a-Si在633nm處有損耗,當共振節點位於a-Si層時,觀察到高穿透率。然而,具有高折射率的a-Si提供了好的相位調制能力。因此,當共振波腹位於a-Si層時,觀察到高偏振轉換率(PCE)。考慮到Nanofin結構製造的挑戰,我們專注於研究深寬比等於5的Nanofin結構來使OPCE增強。在此條件下,a-Si層的最佳位置是在基板上方300nm處。GaN三層Nanofin的OPCE比GaN Nanofin高7.3%。另一方面,Nb2O5三層Nanofin的OPCE增強為62.5%。三層Nanofin結構不僅可以降低深寬比的要求,還可以提高效率。
摘要(英) Geometric phase metasurface can achieve high efficiency by increasing the aspect ratio of structure. However, the structure with high aspect ratio is unfavorable for fabrication. In this thesis, we proposed a solution to reduce the aspect ratio requirement by adding a high refractive index material (a-Si) layer in GaN and Nb2O5 Nanofin structure. We numerically investigated the optical property and overall polarization conversion efficiency (OPCE) enhancement of three-layer Nanofin (GaN/a-Si/GaN and Nb2O5/a-Si/ Nb2O5). In comparison with GaN Nanofin, the aspect ratio requirement of three-layer Nano-fin (a-Si =30nm) dropped from 6 to 4 (about 33%). In the case of Nb2O5, the aspect ratio requirement (a-Si=35nm) dropped from 6 to 4 (about 33%). Due to the a-Si is lossy at 633 nm, higher transmittance was observed when a-Si layer located at the node of resonance. However, a-Si with high refractive index which provided better phase modulation capability. Therefore, higher PCE was observed when a-Si layer located at the anti-node of resonance. Consider the challenge of the Nanofin fabrication, we focused on investigating the OPCE enhancement of the Nanofin with aspect ratio equal to 5. Under this condition, the best location of a-Si layer is 300 nm above the substrate. The OPCE of the three-layer Nanofin was 19% higher than the GaN Nanofin. On the other hands, the OPCE enhancement of Nb2O5 three-layer Nanofin is 62.5%. Nanofin with three-layer can not only reduce the aspect ratio requirement but also enhance the efficiency.
關鍵字(中) ★ 深寬比
★ 超穎介面
關鍵字(英) ★ aspect ratio
★ metasurface
論文目次 摘要.....i
Abstract.....vi
致謝.....vii
目錄.....viii
圖目錄.....x
表目錄.....xiii
第1章 緒論.....1
1-1 研究背景.....1
1-2 超穎介面材料.....3
1-3 超穎介面相位調制.....3
1-4 研究動機.....5
第2章 基本理論.....9
2-1 超穎表面.....9
2-2 等效介質近似理論.....10
2-2.1 一維等效介電近似.....10
2-2.2 二維等效介電近似.....12
2-3 光波的偏振.....13
2-3.1 瓊斯向量(Jones vectors).....16
2-3.2 瓊斯運算(Jones calculus).....19
2-3.3 非等向性介質(Anisotropy media).....19
2-3.4 波板(Wave Plate).....21
第3章 設計與分析.....24
3-1 圓極化的相位分析方法.....24
3-2 GaN Nanofin之光學特性分析.....24
3-3 Nb2O5 Nanofin之光學特性分析.....36
3-4 材料的Complex Refractive index.....45
第4章 結論.....47
參考文獻.....48
參考文獻 [1] Ding, F., Wang, Z., He, S., Shalaev, V. M., & Kildishev, A. V., "Broadband High-Efficiency Half-Wave Plate: A Supercell-Based Plasmonic Metasurface Approach." ACS Nano, vol.9, no.4, pp.4111–4119, April 2015.
[2] Yu, N., Aieta, F., Genevet, P., Kats, M. A., Gaburro, Z., & Capasso, F., "A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces." Nano Letters, vol.12, no.12, pp.6328–6333, December 2012.
[3] Khorasaninejad, M., Chen, W. T., Devlin, R. C., Oh, J., Zhu, A. Y., & Capasso, F., "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging." Science, vol.352, no.6290, pp.1190–1194. June 2016.
[4] Chen, W. T., Yang, K.-Y., Wang, C.-M., Huang, Y.-W., Sun, G., Chiang, I.-D., Liao, C. Y., Hsu, W.-L., Lin, H. T., Sun, S., Zhou, L., Liu, A. Q., & Tsai, D. P., "High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images." Nano Letters, vol.14, no.1, pp.225–230, January 2014.
[5] Larouche, S., Tsai, Y.-J., Tyler, T., Jokerst, N. M., & Smith, D. R., "Infrared metamaterial phase holograms." Nature Materials, vol.11, no.5, pp.450–454, May 2012.
[6] Chern, R.-L., Chang, C. C., & Chang, C. C., "Surface and bulk modes for periodic structures of negative index materials." Physical Review B, vol.74, no.15, pp.155101, October 2006.
[7] Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J., "Magnetism from conductors and enhanced nonlinear phenomena." IEEE Transactions on Microwave Theory and Techniques, vol.47, no.11, pp.2075–2084, November 1999.
[8] Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C., "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment." The Journal of Physical Chemistry B, vol.107, no.3, pp.668–677, January 2003.
[9] Chanda, D., Shigeta, K., Gupta, S., Cain, T., Carlson, A., Mihi, A., Baca, A. J., Bogart, G. R., Braun, P., & Rogers, J. A., "Large-area flexible 3D optical negative index metamaterial formed by Nanotransfer printing." Nature Nanotechnology, vol.6, no.7, pp.402–407, July 2011.
[10] Zheludev, N. I., Prosvirnin, S. L., Papasimakis, N., & Fedotov, V. A., "Lasing spaser." Nature, vol.2, no.6, pp.351–354, June 2008.
[11] Sun, S., Yang, K.-Y., Wang, C.-M., Juan, T.-K., Chen, W. T., Liao, C. Y., He, Q., Xiao, S., Kung, W.-T., Guo, G.-Y., Zhou, L., & Tsai, D. P., “High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces.” Nano Letters, vol.12, no.12, pp.6223–6229, December 2012.
[12] Hsiao, H.-H., Chu, C. H., & Tsai, D. P., "Fundamentals and Applications of Metasurfaces." Small Methods, vol.1, no.4, pp.1600064, 2017.
[13] Ni, X., Wong, Z. J., Mrejen, M., Wang, Y., & Zhang, X., "An ultrathin invisibility skin cloak for visible light." Science, vol.349, no.6254, pp.1310–1314, September 2015.
[14] Huang, Y.-W., Chen, W. T., Tsai, W.-Y., Wu, P. C., Wang, C.-M., Sun, G., & Tsai, D. P., "Aluminum Plasmonic Multicolor Meta-Hologram." Nano Letters, vol.15, no.5, pp.3122–3127, May 2015.
[15] Fan, Z.-B., Shao, Z.-K., Xie, M.-Y., Pang, X.-N., Ruan, W.-S., Zhao, F.-L., Chen, Y.-J., Yu, S.-Y., & Dong, J.-W., "Silicon Nitride Metalenses for Close-to-One Numerical Aperture and Wide-Angle Visible Imaging." Physical Review Applied, vol.10, no.1, pp.014005, July 2018.
[16] Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B., & Capasso, F., "Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization." Physical Review Letters, vol.118, no.11, pp.113901, July 2017.
[17] Yu, Y. F., Zhu, A. Y., Paniagua-Domínguez, R., Fu, Y. H., Luk’yanchuk, B., & Kuznetsov, A. I., "High-transmission dielectric metasurface with 2π phase control at visible wavelengths." Laser & Photonics Reviews, vol.9, no.4, pp.412–418, 2015.
[18] Chen, B. H., Wu, P. C., Su, V.-C., Lai, Y.-C., Chu, C. H., Lee, I. C., Chen, J.-W., Chen, Y. H., Lan, Y.-C., Kuan, C.-H., & Tsai, D. P., "GaN Metalens for Pixel-Level Full-Color Routing at Visible Light." Nano Letters, vol.17, no.10, pp.6345–6352, October 2017.
[19] Park, J.-S., Zhang, S., She, A., Chen, W. T., Lin, P., Yousef, K. M. A., Cheng, J.-X., & Capasso, F., "All-Glass, Large Metalens at Visible Wavelength Using Deep-Ultraviolet Projection Lithography." Nano Letters, vol.19, no.12, pp.8673–8682, December 2019.
[20] Zhang, X., Tian, Z., Yue, W., Gu, J., Zhang, S., Han, J., & Zhang, W., "Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities." Advanced Materials, vol.25, no.33, pp.4567–4572, 2013.
[21] Zheng, G., Mühlenbernd, H., Kenney, M., Li, G., Zentgraf, T., & Zhang, S., "Metasurface holograms reaching 80% efficiency." Nature Nanotechnology, vol.10, no.4, pp.308–312, February 2015.
[22] Berry, M. V., "Quantal phase factors accompanying adiabatic changes." Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, vol.392, no.1802, pp.45–57, March 1984.
[23] Hsu, W.-L., Chen, Y.-C., Yeh, S. P., Zeng, Q.-C., Huang, Y.-W., & Wang, C.-M. "Review of Metasurfaces and Metadevices: Advantages of Different Materials and Fabrications." Nanomaterials, vol.12, no.12, pp.1973, January 2022.
[24]Emani, N. K., Khaidarov, E., Paniagua-Domínguez, R., Fu, Y. H., Valuckas, V., Lu, S., Zhang, X., Tan, S. T., Demir, H. V., & Kuznetsov, A. I., "High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths." Applied Physics Letters, vol.111, no.22, pp.221101, November 2017.
[25]Song, Q., Baroni, A., Sawant, R., Ni, P., Brandli, V., Chenot, S., Vézian, S., Damilano, B., de Mierry, P., Khadir, S., Ferrand, P., & Genevet, P., "Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces." Nature Communications, vol.11, no,1, pp.2651, May 2020.
[26]Li, L., Liu, Z., Ren, X., Wang, S., Su, V.-C., Chen, M.-K., Chu, C. H., Kuo, H. Y., Liu, B., Zang, W., Guo, G., Zhang, L., Wang, Z., Zhu, S., & Tsai, D. P., "Metalens-array–based high-dimensional and multiphoton quantum source." Science, vol.368, no.6498, pp.1487–1490, June 2020.
[27]Lin, R. J., Su, V.-C., Wang, S., Chen, M. K., Chung, T. L., Chen, Y. H., Kuo, H. Y., Chen, J.-W., Chen, J., Huang, Y.-T., Wang, J.-H., Chu, C. H., Wu, P. C., Li, T., Wang, Z., Zhu, S., & Tsai, D. P., "Achromatic metalens array for full-colour light-field imaging." Nature Nanotechnology, vol.14,no.3, pp.227–231, March 2019.
[28] Kawashima, T., Yoshikawa, H., Adachi, S., Fuke, S., & Ohtsuka, K., "Optical properties of hexagonal GaN." Journal of Applied Physics, vol.82, no.7, pp.3528–3535, October 1997.
[29] Philipp, H. R., Handbook of Optical Constants of Solids (pp.749–763), E. D. Palik, Academic Press, Burlington, January 1997.
[30] Gao, L., Lemarchand, F., & Lequime, M., "Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering." Optics Express, vol.20, no.14, pp.15734–15751, July 2012.
[31] Pierce, D. T., & Spicer, W. E., "Electronic Structure of Amorphous Si from Photoemission and Optical Studies." Physical Review B, vol.5, no.8, pp.3017–3029, April 1972.
[32] Palik, E. D., Handbook of optical constants of solids, vol.3, Academic press, 1998.
[33] Yu, N., Genevet, P., Kats, M. A., Aieta, F., Tetienne, J.-P., Capasso, F., & Gaburro, Z., "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction." Science, vol.334, no.6054, pp.333–337, October 2011.
[34] Goodman, J. W., "Introduction to Fourier Optics. Good", McGraw-Hill, 1968.
[35] Jones, R. C., "A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus." JOSA, vol.31, no.7, pp.488–493, July 1941.
指導教授 王智明(Chih-Ming Wang) 審核日期 2022-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明