博碩士論文 108226032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.216.209.112
姓名 余宸逸(Chen-Yi Yu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 全介電幾何相位超穎表面的設計、優化及簡化模型
(Design, optimization and simplified model for all-dielectric geometric phase metasurface)
相關論文
★ 從「紅葉」到「黑鷹」:台灣棒球醜聞的文化再現★ 基於音頻訊號隱藏技術之聲波數位傳輸
★ 金屬鹵化鈣鈦礦塊材之光致發光及光致變色特性研究★ 奈米壓印技術製作全介電幾何相位超穎表面
★ 混合式超穎介面於感光元件之應用★ 以自製灰階曝光機製作各式微光學元件
★ 高效率低深寬比幾何相位超穎介面★ 以雙面非等向性濕蝕刻製備單晶石英深穿孔
★ 奈米壓印技術製作全介電光學繞射元件★ 以超穎校正器提升三片式庫克鏡組光學品質之研究
★ 全介電幾何相位超穎表面的 抗反射設計★ 藉由散射強化輻射冷卻發電之研究
★ 以人工智慧模型修復超穎透鏡影像品質之研究★ 基於波導共振之手鏡超穎介面之研究
★ 像素級超穎介面色彩路由器之設計與製作★ 用於屏下螢幕顯示的相位共軛超穎表面設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文將PB-phase之超穎介面簡化為波板模型,入射光受超穎介面轉為正交偏振態帶有幾何相位,剩餘通過的光帶有動態相位。吾人利用等效介質理論計算超穎介面Unit cell之非等向性之折射率,透過設計Unit cell厚度達到半波板來消除動態相位之影響,讓超穎介面的整體相位為幾何相位效應。將設計完之Unit cell排列為梯度表面超穎介面之相位分布組成Meta-device,透過粒子群最佳化來對Meta-device之相位分布均勻性做優化,使其繞射效率提升。
摘要(英) We simplify the PB-phase supernatural interface into a waveplate model where the incident light is polarized orthogonally by the supernatural interface into a geometric phase and the remaining passing light band has a dynamic phase. We calculate the non-isotropic refractive index of the unit cell of the supernatural interface by using the effective medium approximation theory and design the unit cell to be half-wave plate to eliminate the dynamic phase effect. The phase distribution of the designed unit cell is arranged as a gradient surface to form a Meta-device, and the phase distribution uniformity of the Meta-device is optimized by particle cluster optimization to improve the diffraction efficiency.
關鍵字(中) ★ 幾何相位
★ 超穎表面
★ 超穎透鏡
★ 等校介質近似理論
關鍵字(英) ★ PB-Phase
★ metasurface
★ metalens
★ EMT
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 xi
第1章 緒論 1
1-1 研究背景 1
1-2相位調製之文獻回顧 3
1-3 研究動機 9
1-4 研究目標及規劃 10
第2章 基本理論 12
2-1 前言 12
2-2 羅倫茲振盪模型(The Lorenzt Oscillator Model) 12
2-3 等效介質近似理論(Effective medium approximations theory) 17
2-5光波的偏振(Polarization of Light Wave) 23
2-6 繞射式光柵(Diffractive Grating) 33
2-7 時域有限差分法(Finite Difference Time Domain Method) 41
2-8 粒子群最佳化(Particle Swarm Optimization) 47
第3章 高效率介電超穎表面的厚度分析 52
3-1 圓極化的相位分析方法 52
3-2 FDTD模擬分析 53
3-3 EMT近似分析 55
3-4 動態相位對幾何相位之擾動 61
第4章 Meta-device之設計 71
4-1 梯度表面超穎介面之Meta-device 71
4-2 Meta-device之波前優化 74
第5章 Meta-device繞射效率分析 78
5-1 Meta-device之厚度與偏振轉換率關係 78
5-2 x線偏振入射對Meta-device之RCP與LCP之相位影響 82
5-3 Meta-device之波板特性 86
第6章 結論 89
參考文獻 90
參考文獻 [1] N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, "A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces," Nano Letters, vol. 12, no. 12, pp. 6328-6333 (2012)
[2] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science, vol. 352, no. 6290, pp. 1190-1194 (2016)
[3] W. T. Chen et al., "High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images," Nano Letters, vol. 14, no. 1, pp. 225-230. (2014)
[4] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," Journal of Physical Chemistry B, vol. 107, no. 3, pp. 668-677. (2003)
[5] D. Chanda et al., "Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing," Nature Nanotechnology, vol. 6, no. 7, pp. 402-407. (2011)
[6] N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nature Photonics, vol. 2, no. 6, pp. 351-354. (2008)
[7] S. L. Sun et al., "High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces," Nano Letters, vol. 12, no. 12, pp. 6223-6229. (2012)
[8] H. H. Hsiao, C. H. Chu, and D. P. Tsai, "Fundamentals and Applications of Metasurfaces," Small Methods, vol. 1, no. 4, Art. no. 1600064. (2017)
[9] M. A. Kats, N. F. Yu, P. Genevet, Z. Gaburro, and F. Capasso, "Effect of radiation damping on the spectral response of plasmonic components," Optics Express, vol. 19, no. 22, pp. 21748-21753, (2011)
[10] N. F. Yu et al., "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction," Science, vol. 334, no. 6054, pp. 333-337, (2011)
[11] X. Q. Zhang et al., "Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities," Advanced Materials, vol. 25, no. 33, pp. 4567-4572. (2013)
[12] B. H. Chen et al., "GaN Metalens for Pixel-Level Full-Color Routing at Visible Light," Nano Letters, vol. 17, no. 10, pp. 6345-6352. (2017)
[13] M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 392(1802), pp. 45-57. (1984)
[14] M. Khorasaninejad et al., "Polarization-Insensitive Metalenses at Visible Wavelengths," Nano Letters, vol. 16, no. 11, pp. 7229-7234. (2016)
[15] A. F. J. Levi, Essential Classical Mechanics for Device Physics (Morgan & Claypool, San Rafael, CA, 2016), p. 6–1.
[16] I.F. Almog, M.S. Bradley, and V. Bulovic, The Lorentz Oscillator and its Applications.
[17] P. Lalanne and J. P. Hugonin, “High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms,” J. Opt. Soc. Am. A 15, 1843–1851. (1998)
[18] E. B. Grann, M. G. Moharam, and D. A. Pommet, " Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings," J. Opt. Soc. Am. A, vol. 11, no. 10, pp. 2695-2703, Oct 1994.
[19] R. C. Jones, J. Opt. Soc. Am. 31, 488 ; 31, 500. (1941)
[20] J. W. Goodman, Introduction to Fourier Optics, 2nd ED.
[21] K. Yee, "Numerical Solution of Initial Boundary Value Problem Involving Maxwell′s Equations in Isotropic Media," IEEE Trans. Antennas and Propagation, 14, 302-307. (1966)
[22] J. Berenger, "A Perfect Matched Layer for the Absorption of Electromagnetic Waves," Journal of Computational Physics, 114, 185-200. (1994)
[23] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Neural Networks, 1995. Proceedings., IEEE International Conference on (IEEE), 4, p.1942–1948. (1995)
[24] K. E. Parsopoulo and M N. Vrahatis, “Particle swarm optimization and intelligence : advances and applications,” Information Science Reference. (2010)
[25] J. Pond and M. Kawano, “Virtual prototyping and optimization of novel solar cell designs”, Proc. SPIE 7750, 775028. (2010)
[26] J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg and D. W. Prather, "Thin film silicon solar cell design based on photonic crystal and diffractive grating structures", Opt. Express 16, 5238. (2008)
[27] R. Magnusson, M. Shokooh-Saremi,and E. G. Johnson, “Guided-mode resonant wave plates,” Opt. Lett. 35, 2472. (2010)
[28] Y. Li and M. Hong, “Diffractive Efficiency Optimization in Metasurface Design via Electromagnetic Coupling Compensation,” Materials, 12, 1005. (2019)
[29] I. H. Malitson and M. J. Dodge. “Refractive Index and Birefringence of Synthetic Sapphire”, J. Opt. Soc. Am. 62, p. 1405. (1972)
[30] T. Kawashima, H. Yoshikawa, S. Adachi. “Optical properties of hexagonal GaN,” J. Appl. Phys. 82, p. 3528–3535. (1997)
指導教授 王智明(Chih-Ming Wang) 審核日期 2021-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明